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ABSTRACT 

 

Chemistry of the Colloidal Group II-VI Nanocrystal Synthesis 

by 

Haitao Liu 

Doctor of Philosophy in Chemistry 

University of California, Berkeley 

Professor A. Paul Alivisatos, Chair 

 

In the last two decades, the field of nanoscience and nanotechnology has 

witnessed tremendous advancement in the synthesis and application of group II-VI 

colloidal nanocrystals. The synthesis based on high temperature decomposition of 

organometallic precursors has become one of the most successful methods of making 

group II-VI colloidal nanocrystals. This method is first demonstrated by Bawendi and 

coworkers in 1993 to prepare cadmium chalcogenide colloidal quantum dots and later 

extended by others to prepare other group II-VI quantum dots as well as anisotropic 

shaped colloidal nanocrystals, such as nanorod and tetrapod. This dissertation focuses on 

the chemistry of this type of nanocrystal synthesis.  

The synthesis of group II-VI nanocrystals was studied by characterizing the 

molecular structures of the precursors and products and following their time evolution in 

the synthesis. Based on these results, a mechanism was proposed to account for the 
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reaction between the precursors that presumably produces monomer for the growth of 

nanocrystals. Theoretical study based on density functional theory calculations revealed 

the detailed free energy landscape of the precursor decomposition and monomer 

formation pathway. Based on the proposed reaction mechanism, a new synthetic method 

was designed that uses water as a novel reagent to control the diameter and the aspect 

ratio of CdSe and CdS nanorods.  
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Chapter 1    

 

Introduction 

 

1.1 Motivation 

Colloidal nanocrystals are nanometer size objects composed of an inorganic core 

and a stabilizing organic shell. Usually, the inorganic core possesses useful properties 

while the organic shell renders the particle soluble and processable in common solvents. 

Group II-VI semiconductor nanocrystals have attracted a lot of attention in the last two 

decades. This class of nanocrystals has the general formula of ME, where M = Zn, Cd 

and E = S, Se, Te. Due to the quantum size effect, group II-VI (as well as many other 

types of) semiconductor nanocrystals exhibit interesting size and shape dependent 

properties. One of the most cited examples is the size dependent band gap, especially 

when the size of the nanocrystal is comparable to the exciton Bohr radius of the core 

material. As a result of this size dependent band gap variation, the emission wavelength 

of spherical shaped CdSe nanocrystals can be easily tuned within the visible range by 

simply changing the diameter of the nanocrystal. Another important feature of the 

colloidal nanocrystals is their superior processability. Due to the presence of the organic 

shell, these nanocrystals can be processed from solution and easily incorporated into 

various organic matrixes. Especially, solution processing makes it possible to fabricate 

low cost electronic devices by spin coating. In a sense, colloidal semiconductor 
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nanocrystals can be viewed as liquid semiconductors. Due to these unique properties, 

group II-VI colloidal nanocrystals have been used as the key pieces in the development of 

novel fluorescent labels,1-3 light emitting diodes,4,5 solar cells,6-8 and other electronic 

devices.9  

This dissertation focuses on the chemistry associated with the synthesis and post-

synthesis modification of group II-VI nanocrystals. The organization of the dissertation is 

the following: In this chapter, I introduce the synthesis of group II-VI nanocrystals by 

thermo decomposition of precursors and the theoretical studies of nano-structured 

materials using ab intio calculations. In chapter 2, I present the characterization of the 

precursors and products of the synthesis of group II-VI nanocrystals. In chapter 3, I 

present the reaction kinetics of the nanocrystal syntheses and propose a reaction 

mechanism for the precursor-to-monomer conversion in the synthesis of group II-VI 

nanocrystals. In chapter 4, I use density functional theory calculations to map the overall 

energy landscape of the proposed reaction mechanism. Chapter 5 presents a new shape 

controlled synthesis of CdSe and CdS nanorods, which is designed based on the newly 

proposed reaction mechanism. In this synthesis, water was used as a reagent to control 

the diameter and aspect ratio of the nanorods. In chapter 6, I demonstrate the asymmetric 

chemical modification of tetrapod shaped CdTe nanocrystals using Au nanocrystals. In 

chapter 7, I conclude my research and provide a brief outlook for future directions in the 

field.  

 

1.2 High Temperature Synthesis of Group II-VI Colloidal Nanocrystals in Organic 

Solvent. 
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The synthesis of group II-VI colloidal nanocrystals by thermal decomposition of 

precursors has been extensively used in the past decade. This synthetic approach was first 

reported for the synthesis of cadmium chalcogenide quantum dots,10 and later was 

extended to make nanorods,11,12 and tetrapods.12,13 The original synthesis is carried out by 

thermally decomposing a mixture of CdMe2 and tri-alkyl-phosphine chalcogenide in a 

hot TOPO solution. Later, a more synthetically convenient precursor, CdO,14,15 was 

introduced to replace CdMe2 and non-coordinating solvents, such as octadecene (ODE), 

were used to replace TOPO.16 Besides its application in the synthesis of quantum dots, 

rods, and tetrapods of cadmium chalcogenides, this synthesis has also been extended to 

prepare ZnS and ZnSe nanocrystals17 as well as core-shell dots and rods,18,19 branched 

rods and tetrapods,20,21 and quantum dot - quantum well structures.22,23  

The Bawendi-Murray synthesis of cadmium chalcogenide quantum dots. The 

first successful synthesis of high quality, almost defect free cadmium chalcogenide 

nanocrystals was reported by Bawendi and coworkers in 1993.10 In their synthesis, a 

cadmium precursor and a chalcogen precursor were co-injected into a mixture of TOPO 

and TOP at high temperature (usually 250ºC – 350ºC). Under these reaction conditions, 

the precursors decompose rapidly to produce nanocrystals that are capped by TOPO and 

TOP molecules in-situ. The unique feature of this synthesis is the use of high boiling 

point solvent (TOPO and TOP), which makes it possible to carry out the reaction at much 

higher temperature than any previous methods. Presumably, the high temperature anneals 

the inorganic lattice to produce high quality, almost defect free nanocrystals. By 

controlling the reaction conditions, such as temperature and time, nanocrystals of 

different sizes could be routinely obtained with less than 10% standard deviation of the 
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diameter. This synthetic method has tremendous impact on the research of group II-VI 

nanocrystals. As time of writing (March, 2007), the original report on the synthesis of 

cadmium chalcogenide quantum dot has been cited for more than 2000 times.  

The precursors used in the original Bawendi-Murray synthesis are organic or 

organometallic compounds such as CdMe2, tri-n-octylphosphine chalcogenides and bis-

trimethylsily chalcogenides. The success of this synthetic method triggered the high 

temperature synthesis of other group II-VI, group III-V, and group IV-VI nanocrystals. 

Some notable examples can be found in table 1-1.  

 

Material Cation Precursor Anion Precursor Ref 

ZnS/ZnSe ZnEt2 TOPSe 24 

GaAs/InAs/InP GaCl3/InCl3 As(TMS)3/P(TMS)3 25-27 

PbS/Se/Te Pb(Ac)2 TOPS/TOPSe/TOPTe 28-30 

 

Table 1-1. High temperature solution phase synthesis of semiconductor nanocrystals 

 

Shape controlled synthesis of group II-VI nanocrystals. The original Bawendi-

Murray method only produces spherical shaped nanocrystals. Later, it was discovered by 

Alivisatos and coworkers that when alkyl-phosphonic acid was added to the growth 

medium and high concentration of precursors was used, rod shaped CdSe nanocrystals, or 

nanorod, could be produced.11,12 It was rationalized that phosphonic acid adsorbs to the 

side facets (e.g., 11-20) of the nanorod much stronger than to the end facets (e.g., 0002 

and 000-2). It was believed that adsorption of alkyl-phosphonic acid molecules modulates 



 5

the growth rate of different crystal facets. Since the end facets are relatively less covered 

by alkyl-phosphonic acid than the side facets are, growth of the end facets are favored 

relative the side facets, resulting in rod shaped nanocrystals. By controlling the reaction 

conditions, other anisotropic shaped nanocrystals were also synthesized, such as 

tetrapods13 and hyper-branched21 nanocrystals. 

The use of metal oxide and non-coordinating solvents. The original Bawendi-

Murray method is very successful in producing high quality nanocrystals. However, it 

still has several drawbacks. Especially, the precursors and solvents used in the synthesis, 

especially CdMe2, bis-trimethylsily chalcogenides, and TOP, are either highly toxic or 

pyrophoric. To address this problem, Peng and coworkers have reported a modified 

synthesis of cadmium chalcogenides using CdO as the cadmium precursor.14 In this 

synthesis, CdO was first dissolved in alkyl-phosphonic acid or carboxylic acid at high 

temperature and phosphine chalcogenide was then injected to grow nanocrystals. The 

same group also used non-coordinating solvents, such as ODE, to replace TOPO and 

TOP to make a variety of nanocrystals, including Cd and Zn chalcogenides.16,17  

Other synthetic methods. Though numerous other variations of precursors, 

solvent, and surfactants have been studied in the synthesis of group II-VI nanocrystals, 

these methods were not as widely used as the ones discussed above. From the chemist 

point of view, the use of elemental chalcogene instead of phosphine chalcogenide 

represents maybe another major modification of the original Bawendi-Murray 

synthesis.16,31 

Size and shape evolution of group II-VI nanocrystals during the growth. A 

number of publications have documented the temporal evolution of nanocrystal size and 
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shape during the growth of group II-VI nanocrystals, especially for the case of CdSe. 

Alivisatos and coworkers have studied the time evolution of CdSe quantum dot in 

TOPO.26 They suggested that the growth of nanocrystal is a diffusion limited process. 

They also find that the size dispersion of nanocrystal decreases at high ‘monomer’ 

concentration, a phenomenon they called “focusing of size distribution”. Another study 

by Muvalley and coworkers documented the growth of CdSe quantum dot in a non-

coordinating solvent using oleic acid as the surfactant.32 They observed that the 

concentration of nanocrystal did not change appreciably during the whole growth period. 

This observation suggests that nanocrystals nucleate only at the very beginning of the 

reaction which is followed by growth of existing nuclei. Alivisatos group and Peng group 

have studied the shape evolution of CdSe nanorod in TOPO prepared from CdMe2 and 

CdO, respectively.12,33,34 They have found that high concentration of precursors is 

essential in producing anisotropic shaped nanocrystals. The growth of more exotic shaped 

materials, such as tetrapod, has also been studied, but to a less extend.13  

 

1.3 Theoretical Modeling of Nanocrystalline Materials 

ab initio calculation has played a significant role in understanding the physics and 

chemistry of nanocrystalline materials. Due to the large size of the nanocrystal, much of 

the related work has been based on density functional theory (DFT) method, which 

provides a good balance between accuracy and speed.  

The ground state geometry and electronic structure of group II-VI clusters have 

been calculated by several groups.35-38 For the case of CdSe, the cohesive energy per 

CdSe unit generally increases with increasing size of the cluster. However, it was also 
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found that certain clusters are much more stable than their neighbors. These clusters are 

often called ‘magic clusters’. Several pieces of experimental evidence suggest that this 

kind of cluster exist in the synthesis and are likely to play an important role in the 

nucleation and growth of nanocrystals.34,36  

The binding of surfactant molecule to the nanocrystal surface plays an important 

role in the growth of nanocrystal and has been subject to a number of studies.37,39,40 For 

the case of CdSe, it is now generally agreed that surfactant molecules bind to electron 

deficient surface Cd atoms via the electron rich oxygen, nitrogen, or phosphorous atoms. 

The binding energy ranges from 0.5 - 1.0 eV depending on the nature of the surfactant. 

These studies also show that the binding energy is different for different crystal facets, 

which provides an explanation for the formation of nanorod in the presence of certain 

surfactant molecules, such as alkyl-phosphonic acid. 

 

1.4 Chemistry of the Nanocrystal Synthesis 

The synthesis of group II-VI nanocrystals has been studied for more than a decade. 

Current state-of-the-art synthetic methods routinely produce high quality nanocrystalline 

materials with desired size and shape. However, from the chemist point of view, the 

understanding of these syntheses is still at a very rudimentary stage. With the exception 

of inorganic nanocrystals, the precursors and products of the synthesis have not been 

characterized at all. As a consequence, little is known about the detailed reactions 

between the precursors. In a similar vein, the nanocrystal nucleation and growth process 

have not been understood in terms of their associated chemistry.  
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Current understanding of the nanocrystal synthesis offers little guidance on the 

selection of reaction conditions and precursors. As a result, synthetic work in the field 

was routinely conducted in a trial-and-error fashion. The synthesis of each type of 

material must be developed via tedious empirical optimizations, which requires extensive 

search of a large parameter space, including precursor, solvent, surfactant, and reaction 

conditions.   

In addition to its obvious scientific contribution, understanding the chemistry 

associated with the nanocrystal synthesis could benefit the nanoscience community in a 

number of practical ways. First, it will offer guidance in searching parameter space when 

a new material is to be prepared. Second, it will allow rational control of nanocrystal size 

and shape and offers the possibility of synthesizing new exotic shaped nanocrystals. 

Third and most importantly, it will open the door to multi-step synthesis of complex 

nanostructures, much like the way organic chemists have been doing when synthesizing 

complex organic molecules, such as natural products. 

Precursor vs. monomer. In this dissertation, precursor refers to the starting 

material used to prepare the nanocrystals while monomer refers to the inorganic unit 

immediately available for the nucleation and growth of nanocrystal. Precursors are stable 

compounds that can be well characterized by common analytical techniques such as 

NMR, MS, and elemental analysis. Common precursors used in the synthesis of group II-

VI nanocrystals are phosphine chalcogenides, CdMe2, Cd-ODPA complex, and Cd-OA 

complex. Monomer, on the other hand, is an unstable intermediate between precursor and 

nanocrystal and is much harder to characterize than the precursors. So far, there has been 

no report on the structure of the monomer. Monomer is produced by the reaction between 
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precursors and is consumed by the nanocrystal nucleation and growth process. As a result, 

the monomer concentration is dynamically changing during the synthesis of nanocrystals. 

The concentration of monomer controls the nucleation and growth of nanocrystal: if the 

monomer concentration is higher than the nucleation threshold, then new nuclei of 

nanocrystal are produced while existing nanocrystals grow; if the monomer concentration 

is higher than the solubility of the nanocrystal but lower than the nucleation threshold, 

then no nucleation occurs and only the existing nanocrystals grow; if the monomer 

concentration is lower than the solubility of nanocrystal, then the nanocrystals dissolve.34  

In the literature, precursor and monomer are often, regrettably, not distinguished 

in the discussion of nanocrystal nucleation and growth.12 This confusion is in part due to 

the limited understanding of the chemical process of nanocrystal synthesis. A clear 

distinction between these two terms is made in this dissertation. In fact, one of major 

goals of this dissertation is to understand the kinetics and mechanism of monomer 

generation from the precursors.     
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Chapter 2 

 

 Spectroscopic Characterization of the  

Precursors and Products  

 

Reproduced in part with permission from “Liu, H.; Owen, J. S.; Alivisatos, A. P. 

“Mechanistic Study of Precursor Evolution in Colloidal Group II-VI Semiconductor 

Nanocrystal Synthesis” J. Am. Chem. Soc. 2007, 129, 305-312, Copyright 2007 American 

Chemical Society. 

 

2.1 Introduction 

Even though the synthesis of group II-VI nanocrystals can now be routinely 

carried out to produce high quality nanocrystals, the chemistry associated with the 

formation of this type of nanocrystals has not been well understood. Previous mechanistic 

study on the synthesis of group II-VI nanocrystals has been exclusively focused on 

following the kinetics of nanocrystal growth and shape evolution by monitoring the size 

and shape of nanocrystals using UV-Vis, PL, and TEM. These studies have generated 

many important concepts such as size distribution focusing,1 selective adhesion shape 

control,2-4 and branching,3,5,6. However, one of the most fundamental questions remains 

unsolved: how precursors are converted into inorganic materials.  
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As the first step toward understanding the mechanism of nanocrystal formation on 

the molecular level, I present an extensive characterization of the reaction precursors and 

products of the synthesis of group II-VI nanocrystals. Using a combination of NMR (1H, 

13C, and 31P) and mass spectroscopy I have investigated the synthesis of group II-VI 

semiconductor nanocrystals in TOPO and ODE by following the disappearance and 

appearance of molecular precursors and products. This is the first time that this complex 

reaction was fully characterized at the molecular level.  

 

2.2 Experimental 

Tri-n-octylphosphine (TOP, 97%, Strem), tri-n-butylphosphine (TBP, 99%, 

Strem), tri-iso-propylphosphine (Aldrich), TOPO (Aldrich, 99%, lot number 24801MB, 

and 04017PC). n-octadecylphosphonic acid (H2-ODPA, Polycarbon), CdO (Aldrich, 

99.99+%), ZnO (Aldrich, 99.99+%), oleic acid (H-OA, Aldrich, 99%), n-nonane-d20 

(Aldrich, 98 atom %D), n-decane-d22 (Arcos, 99 atom %D), ODE (Aldrich, 90%) were 

used as received. Standard air sensitive techniques were used to handle air and moisture 

sensitive compounds.  

NMR methods. All NMR (1H, 13C, and 31P) spectra were collected on a 400 MHz 

Bruker Advance spectrometer. 31P NMR spectra were acquired either without proton 

decoupling or with inverse gated decoupling and care was taken to ensure adequate 

relaxation (> 5 × T1) between pulses. In situ experiments were conducted under vacuum 

in flame sealed NMR tubes. These samples were inserted into a preheated NMR probe 

that was calibrated using ethylene glycol as a standard according to an established 

procedure.7 CDCl3 solutions of aliquots from the TOPO based reaction were prepared in 
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air. Control experiments showed that CDCl3 solutions of TOPE and TBPE (E = Se, S) 

stored in air at room temperature are air stable for several weeks, with only < 2% 

conversion to TOPO by 31P NMR spectroscopy. 

The concentration of phosphine chalcogenide was obtained by comparing the 

integral of its 31P NMR peak with that of the phosphine oxide peak and assuming the total 

concentration of the two species was constant during the reaction. This assumption was 

verified to be valid (< ±2% error) by using an internal standard (ethylphosphonic acid 

diethyl ester) in the in situ experiments. The 31P NMR resonances of TOPO and TOPS 

partially overlap, in which case peak integrals were obtained by deconvolution of the two 

resonances using MestReC (Mestrelab Research).  

Synthesis and characterization of TOPSe, tri-n-octylphosphine sulfide 

(TOPS), tri-n-butylphosphine sulfide (TBPS), TBPSe, tri-n-butylphosphine telluride 

(TBPTe). Traditional syntheses of group II-VI nanocrystals use a mixture of TOP and 

TOPE (or mixture of TBP and TBPE) as the injection solution.8 To simplify the analysis, 

we used the pure phosphine chalcogenide instead of a mixture with its parent phosphine. 

Phosphine chalcogenides were prepared by stirring the appropriate phosphine with a 

stoichiometric or excess amount of elemental S/Se/Te in a glove box at room 

temperature. The supernatant was separated from the excess solid chalcogen and was 

found to be pure by NMR (1H, 13C, and 31P) and elemental analysis.   

TBPS: A mixture of TBP (2.02 g, 0.010 mol) and sulfur (0.435 g, 0.014 mol) was 

stirred at r.t. in a glove box overnight. The supernatant was used in the experiments 

without further purification. 1H (CDCl3, δ ppm): 1.63-1.70 (m, 6H), 1.37-1.47 (m, 6H), 

1.23-1.32 (m, 6H), 0.79 (t, 9H, J = 7.3 Hz). 13C (CDCl3, δ ppm, more than 4 peaks 
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appeared due to the coupling between 13C and 31P): 30.49, 29.99, 24.11, 24.07, 23.69, 

23.54, 13.31. 31P (CDCl3, δ ppm): 48.7. Anal. (calcd, found): C (61.49, 61.11), H (11.61, 

11.84). TBPSe, TBPTe, TOPSe, and TOPS were prepared similarly with longer reaction 

times. 

TBPSe: 1H (CDCl3, δ ppm): 1.73-1.79 (m, 6H), 1.36-1.46 (m, 6H), 1.23-1.33 (m, 

6H), 0.79 (t, 9H, J = 7.3 Hz). 31P (CDCl3, δ ppm): 36.8, JP-Se = 680 Hz. Anal. (calcd, 

found): C (51.24, 51.37), H (9.68, 9.78). 

TBPTe: The mixture solidified into a yellow crystalline solid after it was stored 

in a glove box at r.t. for 30 days. 1H (CDCl3, δ ppm): 1.96-2.03 (m, 6H), 1.38-1.56 (m, 12 

H), 0.93 (t, 9H, J = 7.2Hz). 13C (CDCl3, δ ppm): 30.45, 30.09, 26.56, 26.52, 23.55, 23.40, 

13.61. 31P (CDCl3, δ ppm): -13.2. JP-Te(125Te) = 1655 Hz, JP-Te(123Te) = 1370 Hz.  

TOPSe: 1H (CDCl3, δ ppm): 1.83-1.90 (m, 6H), 1.49-1.59 (m, 6H), 1.32-1.39 (m, 

6H), 1.22-1.29 (m 24H), 0.84 (t, 9H, J = 6.8 Hz). 31P (CDCl3, δ ppm): 36.4. JP-Se = 678 

Hz. 77Se (CDCl3, δ ppm): -377, -386. Anal. (calcd, found): C (64.11, 64.46), H(11.3, 

11.65).  

TOPS: 1H (CDCl3, δ ppm). 1.72-1.79 (m, 6H), 1.49-1.59 (m, 6H), 1.32-1.37 (m, 

6H), 1.21-1.32 (m, 24H), 0.85 (t, 9H, J = 6.6 Hz). 31P (CDCl3, δ ppm): 48.6. Anal. (calcd, 

found): C (71.58, 72.05), H(12.77, 13.06).  

Synthesis of cadmium and zinc oleic acid complexes (M-OA, M=Zn, Cd).9 

Cd-OA: To a 25 mL flask was added H-OA (4.55 g, 16 mmol) and CdO (0.518 g, 4.0 

mmol). The mixture was degassed at 100 °C, 250 mtorr for 30 min. The flask was then 

filled with Ar and heated to 190 °C to dissolve CdO. After the dissolution of CdO, the 

mixture was cooled to 110 °C and degassed again at 300 mtorr for 20 min. The solution 
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was then cooled to r.t. and stored in a freezer under N2. A stock solution was prepared by 

dissolving 2.40 g of this complex in 1.60 g of n-nonane-d20 and was used in the synthesis 

of CdS, CdSe, and CdTe nanocrystals. Zn-OA was prepared similarly by dissolving ZnO 

(0.167 g, 2.05 mmol) in a mixture of H-OA (2.319 g, 8.02 mmol) and ODE (2.50 g) at 

300°C under Ar followed by degassing at 100 °C. The neat reaction mixture was used in 

the synthesis of ZnS, ZnSe, and ZnTe nanocrystals. 

Synthesis of CdSe nanocrystal in TOPO/H2-ODPA at 260 °C - the ‘doubly 

degassed’ protocol. To a 25 mL three-neck flask equipped with a condenser and a 

thermocouple adapter was added TOPO (2.73 g, 7.06 mmol), H2-ODPA (1.07 g, 3.20 

mmol), and CdO (0.204 g, 1.60 mmol). The mixture was degassed at 120 °C and 200 - 

400 mtorr pressure for 60 min. The flask was then filled with Ar and the temperature was 

raised to 320 °C to dissolve CdO. After dissolving CdO, the temperature was lowered to 

150 - 180 °C and the pressure was reduced to ~300 mtorr for 60 min (this step will be 

referred to in the text as the ‘second degassing’). The flask was then filled with Ar and 

the temperature was raised to 270 °C. TOPSe (0.70 g, 1.6 mmol) was injected and the 

temperature was allowed to stabilize at 260 ± 2 °C. The amount of TOPSe injected (1.4 ± 

0.1 mmol) was measured as the difference between the mass of the syringe before and 

after the injection. Aliquots taken after the injection of TOPSe were dissolved in CDCl3 

and transferred to NMR tubes in air. NMR spectra of the aliquots were collected within 

24 hr of sampling.  

In situ monitoring of the synthesis of CdSe nanocrystal in n-nonane-d20. To a 

5 mm NMR tube was added TOPSe (0.0809 g, 0.18 mmol), the Cd-OA stock solution 

(0.375 g, 0.18 mmol of Cd2+ and 0.72 mmol of H-OA/OA), and n-nonane-d20 (0.0478 g). 
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The mixture was degassed by four cycles of freeze-pump-thaw before the NMR tube was 

flame sealed under vacuum. The NMR probe was then pre-heated to the desired reaction 

temperature and the sample was inserted into the probe and allowed to temperature 

equilibrate for 4 min before NMR spectra (1H, 13C, and 31P) were collected. NMR spectra 

were also collected at room temperature before and after the reaction to analyze the 

reaction products.  

Synthesis of ME (M=Cd, Zn; E=S, Se, Te) nanocrystals in non-coordinating 

solvent in sealed NMR tube. CdS: In a 5 mm NMR tube was added Cd-OA stock 

solution (0.14 g, 0.060 mmol Cd), TBPS (16 mg, 0.068 mmol), and n-decane-d22 (0.30 g). 

The mixture was degassed by three cycles of freeze-pump-thaw before it was flame 

sealed under reduced pressure (300 mtorr). The mixture was heated to 150 °C for 2.5 h. 

31P NMR (C9D20/C10D22, δ ppm): 57.0 (TBPO, identified by addition of TBPO), 50.7 

(TBPS). Selected (OA)2O peaks in the 13C NMR spectrum (C9D20/C10D22, δ ppm): 168.5, 

130.1, 129.7, and 35.4.  

CdTe: This is similar to the synthesis of CdS nanocrystal in non-coordinating 

solvent using TBPTe. The mixture was heated to 120 °C in an oil bath for 20 min. 31P 

NMR (C9D20/C10D22, δ ppm): 52.9 ppm (TBPO). Selected (OA)2O peaks in the 13C NMR 

spectrum (C9D20/C10D22, δ ppm): 168.7, 130.1, 129.8, 35.4.  

ZnS: This is similar to the synthesis of CdSe nanocrystal in non-coordinating 

solvent using TBPS (62 mg, 0.26 mmol) and Zn-OA stock solution (0.64 g, 0.25 mmol 

Zn) in ODE solvent. The mixture was heated to 265 °C in an oil bath for 42 min. 31P 

NMR (crude reaction mixture, without 2H lock, δ ppm): 56.6 (TBPO), 46.3 (TBPS). 



 20

Selected (OA)2O peaks in the 13C NMR spectrum (crude reaction mixture, without 2H 

lock, δ ppm): 167.9, 129.3, 129.0, 34.6.  

ZnSe: This is similar to the synthesis of CdSe nanocrystal in non-coordinating 

solvent using TBPSe (77 mg, 0.27 mmol) and Zn-OA stock solution (0.64 g, 0.25 mmol 

Zn) in ODE solvent. The mixture was heated to 265 °C in an oil bath for 42 min. 31P 

NMR (without 2H lock, δ ppm): 53.6 ppm (TBPO), 35.0 (TBPSe). Selected (OA)2O 

peaks in the 13C NMR spectrum (without 2H lock, δ ppm): 167.9, 129.3, 129.0, 34.6. 

ZnTe: This is similar to the synthesis of CdSe nanocrystal in non-coordinating 

solvent using TBPTe (0.12 g, 0.36 mmol), TBP (0.12 g, 0.59 mmol), Zn-OA stock 

solution (0.82 g, 0.32 mmol Zn), and n-decane-d22 (0.39 g). The mixture was heated to 

230 °C in an oil bath for 150 min. 31P NMR (δ ppm): 53.5 ppm (TBPO), -25.0 (TBPTe 

and TBP, due to fast exchange of Te between TBPTe and TBP).  

Karl-Fischer titration. The moisture content of reaction mixture and pure 

reagents was determined by volumetric Karl-Fischer titration using HYDRANAL 

reagents (Aldrich). Briefly, 1.0 g of the sample to be titrated was mixed with 5.0 g of 

HYDRANAL-Solvent 2E and titrated by dropwise addition of HYDRANAL-Titrant 2E 

via a syringe in a glove box. The titration was stopped when the solution turns into a 

yellow-brown color, indicating the presence of unreacted titrant. A control experiment 

was carried out to determine the moisture content in the HYDRANAL-Solvent 2E which 

was deducted as a background from all the titration results.  

Titration of water produced during the dissolution of CdO in H2-

ODPA/TOPO. To a 30 mL vial in a glove box was added TOPO (1.0 g), H2-ODPA (1.07 

g, 3.2 mmol), and CdO (0.212 g, 1.6 mmol). The vial was tightly capped and brought out 
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of the glove box before it was heated to high temperature to dissolve CdO. The vial was 

then brought into the glove box and the mixture was titrated using the method described 

above.  

Determine the amount of water in the ‘doubly degassed’ reaction mixture. A 

mixture of TOPO/Cd-ODPA was prepared following the ‘doubly degassed’ protocol 

using TOPO (2.73 g), H2-ODPA (1.07 g), and CdO (0.205 g). The second degassing was 

carried out at 150 °C, 300 mtorr for 5 min. HYDRANAL-Solvent 2E (10 mL) was added 

to the flask via a syringe at 100 °C. The mixture was cooled to 30 °C and titrated as 

described above. The reaction mixture was vigorously shaken to ensure that water 

adsorbed on the reaction vessel and lower part of the condenser was also titrated. 

H2
18O-TOP16O isotope exchange. To a 25 mL three-neck flask was added TOPO 

(2.73 g, 7.06 mmol), H2-ODPA (1.07 g, 3.2 mmol), and CdO (0.207 g, 1.6 mmol). The 

mixture was degassed at 120 °C, 300 mtorr for 20 min. The flask was then filled with Ar 

and heated to 320 °C to dissolve CdO giving a pale yellow solution. The reaction was 

cooled to 160 °C and the pressure was reduced to ~500 mtorr for 33 min. The mixture 

was then heated to 290 °C under Ar and H2
18O (Isotech, 95% min 18O, 56 mg, 3.1 mmol 

H2
18O) was injected at this temperature via a syringe. Aliquots of the mixture were taken 

via a syringe and dissolved in methanol before they were analyze by NMR spectroscopy. 

Decomposition of TOPSe in TOPO/H2-ODPA in the absence of Cd2+. TOPO 

(1.0 g) and H2-ODPA (0.50 g) were heated to 290 °C under Ar before TOPSe (0.537 g) 

was injected at this temperature. Water (0.1 mL) was added to the reaction mixture via a 

syringe at 83 min after the injection of TOPSe. 31P NMR analysis showed that 7% and 
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15% of TOPSe was consumed at 79 min and 265 min after the injection of TOPSe, 

respectively.  

 

2.3 Characterization of Precursors 

Chalcogen Precursor. Solution of elemental chalcogen in tri-alkylphosphine, 

such as TOP or TBP, was frequently used as the chalcogen source in the synthesis of 

group II-VI nanocrystals. It has been known that when chalcogen is dissolved in 

alkylphosphine, a new compound, phosphine chalcogenide, is formed by the reaction 

between elemental chalcogen and tri-alkylphosphine in a 1:1 molar ratio. Both MS and 

NMR data show that phosphine chalcogenide is the only molecule that contains 

chalcogen atom in this ‘solution’ of elemental chalcogen. When excess elemental 

chalcogen is mixed with tri-alkylphosphine, only 1 molar equivalent of chalcogen 

(relative to phosphine) could be dissolved, which shows that physical dissolution of 

elemental chalcogen in tri-alkylphosphine and phosphine chalcogenide is negligible at 

room temperature. 

    TOPSe, TBPSe, and TBPS were found to be stable in air. No change was 

observed in the 31P NMR spectrum for a CDCl3 solution of TOPSe that was left in air for 

20 days (Figure 2-1). When Cd-ODPA was added to a CDCl3 solution of TOPSe, < 2% 

of TOPSe was converted to TOPO after 20 days. Similar results were obtained for CDCl3 

solutions of TBPSe and TBPS after they were exposed to air for 5 days.  

Metal Precursor. Dissolution of cadmium oxide (CdO) with phosphonic acids 

has been reported to produce a phosphonic acid complex of cadmium.8,10 A balanced 

chemical equation for this reaction is shown below in eq. 2-1.  
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CdO + H2-ODPA  Cd-ODPA + H2O                                                             (2-1) 

 

 

 

Figure 2-1. 31P NMR spectrum of a CDCl3 solution of TOPSe after it was stored in 

air for 20 days. 

 

Upon heating cadmium oxide and H2-ODPA in TOPO to ~ 300 ºC, immiscible, 

colorless droplets form on the walls of the reaction vessel. 1H NMR analysis of these 

droplets in DMSO-d6 showed no peaks other than an increase in the amount of water 

impurity in the NMR solvent. The moisture content of this reaction mixture was further 

analyzed using a Karl-Fischer titration.11,12 The titration results indicate that both 

commercial samples of TOPO and H2-ODPA used in this study have < 0.2% (w/w) 
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moisture. To confirm the stoichiometry of equation 2-1, CdO (0.211 g, 1.64 mmol) was 

dissolved in a mixture of TOPO (1.00 g) and H2-ODPA (1.07 g, 3.20 mmol) in a tightly 

closed vial filled with Ar and the resulting mixture was cooled and dissolved in 

anhydrous ethanol in a glove box. Karl-Fisher titration showed that the mixture contained 

32 mg of water. After subtracting the moisture in TOPO and H2-ODPA, it was found that 

28 mg (1.56 mmol; expected: 29.6 mg, 1.64 mmol) of water was produced upon 

dissolution of the CdO. To test the drying efficiency of the second degassing after 

decomposing CdO, a reaction mixture was titrated after it had been degassed for 5 min 

and only 3 mg (0.17 mmol, ~ 10%) of water remained. 

31P NMR spectroscopy was also used to characterize the cadmium n-

octadecylphosphonate complex (Cd-ODPA). Immediately after dissolving CdO with H2-

ODPA in TOPO, the mixture was dissolved in CDCl3 giving a clear, viscous solution that 

became turbid after standing for more than a day. 31P NMR analysis of freshly prepared 

CDCl3 solutions of Cd-ODPA showed a sharp TOPO resonance and one broad peak at δ 

= 25 ppm (fwhm = 10 ppm). No resonances for free H2-ODPA were observed. In 

addition, the acid proton of H2-ODPA could not be located in the 1H NMR spectrum. A 

similar NMR analysis was performed on the oleic acid complex of cadmium (Cd-OA) 

prepared by the analogous decomposition of CdO in H-OA using 4:1 molar ratio of H-

OA to CdO. 1H and 13C NMR analysis of Cd-OA showed spectra similar to those of H-

OA except that the relative intensity of the acidic proton had dropped 50% due to the 

consumption of 2 equivalents of H-OA during the dissolution of CdO. The oleic acid 

complex of zinc (Zn-OA), on the other hand, was much less soluble in CDCl3 and was 

not analyzed.  
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The broad 31P NMR resonance, high viscosity and low solubility of Cd-ODPA in 

CDCl3 support the idea that this cadmium precursor is a coordination polymer. Single 

crystal X-ray studies of Cd(O3PCH3)·H2O and Cd(O3PC6H5)·H2O provide structurally 

characterized examples of this type of coordination polymer that is composed of layers of 

cadmium ions bridged together by phosphonate groups.13 Unlike Cd-ODPA, Cd-OA is 

soluble in CDCl3 and gives sharp 1H and 13C NMR resonances, which does not, however, 

rule out the possibility that this compound also forms a similar coordination polymer or 

oligomeric structure. Single crystal structures of cadmium acetate and self assembled 

monolayers of other long chain carboxylic acid complexes of cadmium support the notion 

that Cd-OA may also be a coordination polymer under our conditions despite its sharp 

NMR resonances.14 The low solubility of the Zn-OA in CDCl3 may be due to a polymeric 

structure in this case. 

Phosphonic acid surfactant. H2-ODPA is very insoluble in CDCl3 and hence its 

31P NMR spectrum was recorded in methanol-d4/ethanol (1:3 v/v) showing one resonance 

at δ = 29.4 ppm. n-tetradecylphosphonic acid (H2-TDPA) and n-octylphosphonic acid 

(H2-OPA) are, however, more soluble in CDCl3 and showed singlets at δ = 38.4 and 37.7 

ppm, respectively. A solution of H2-ODPA in CDCl3 could be obtained by dissolving a 

hot mixture of H2-ODPA and TOPO in CDCl3 or by heating H2-ODPA and TOPO in 

CDCl3. A 31P NMR spectrum of this mixture (H2-ODPA : TOPO = 1:2 w/w) contains 

three peaks at δ = 50.2 ppm (TOPO), 33.7 ppm (H2-ODPA), and 24.1 ppm. The 

resonance at 24.1 ppm does not arise from an impurity of TOPO or ODPA, since it is not 

observed in a CDCl3 solution of pure TOPO or in a methanol-d4/ethanol solution of pure 

H2-ODPA. In addition, the intensity of the 24.1 ppm peak is 8% of the H2-ODPA peak 
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intensity in a concentrated sample (50 mg H2-ODPA and 75 mg TOPO in 1 mL of 

CDCl3) and decreases to < 2% in a dilute sample (5 mg H2-ODPA and 10 mg TOPO in 1 

mL of CDCl3). This concentration dependence suggests that the 24.1 ppm peak may arise 

from a hydrogen bonded complex between TOPO and H2-ODPA or between two or more 

H2-ODPA molecules.15  

TOPO. The purity of TOPO was analyzed with 31P NMR spectroscopy. At least 

three impurities were found in the 99% pure TOPO purchased from Aldrich (Figure 2-2). 

The spectrum is very similar to that of a sample of 90% TOPO from Aldrich. The amount 

and type of impurity in TOPO depends on the batch and source. However, the 31P NMR 

spectra of different batch of TOPO usually contain at least two of the three impurities 

peaks shown in Figure 2-2. Vacuum distillation was not effective in removing all the 

impurities.  
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Figure 2-2. 31P NMR spectrum of a sample of 99% pure TOPO (Aldrich, lot # 24801MB) 

used in this study. The spectrum is enlarged to show the impurity peaks (*). One of the 

impurity peaks (δ = 48.5 ppm) overlaps with a 13C satellite of TOPO. The purity of 

TOPO in this sample was estimated to be 93% (mol/mol).  

 

General comments on the 31P NMR spectra of the reagents used in the 

synthesis. 31P NMR chemical shifts of Cd-ODPA, as well as the other phosphorus 

containing reagents, dissolved in CDCl3 are shown in Table 2-1. The chemical shifts of 

ODPA, TOPO, and TOPSe were found to be sensitive to the presence of Lewis acids and 

bases. For example, the TOPO resonance shifts downfield from its pure form with added 
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H2-ODPA and the major H2-ODPA resonance shifts upfield with added TOPO. The 

chemical shift of TOPSe was also found to be sensitive to the presence of added Lewis 

acids. Addition of cadmium 2-ethylhexanoate to a CDCl3 solution of TOPSe caused its 

31P NMR resonance to shift to higher ppm and a decrease in the 1J (31P-77Se). In contrast, 

however, the addition of cadmium octylphosphonate,16 to TOPSe in CDCl3 did not 

change the chemical shift of TOPSe, nor did it affect the 1J (31P-77Se). In addition, 

aliquots taken in the CdSe synthesis using TOPSe and Cd-ODPA in TOPO did not show 

any change in the chemical shift or 1J (31P-77Se) of TOPSe when compared to a solution 

of pure TOPSe in CDCl3. 

 

 δ (31P) [ppm] 1J (31P-77Se) [Hz]

TOPO 48.5 - 

TOPO + H2-ODPA a 50.2, 33.7, 24.1 - 

TOPS 48.6  - 

TOPSe 36.4 678 

TOPSe + Cd2+ b 39.3 615 

TBPS 48.7 - 

TBPSe 36.8 680 

TBPTe -13.2 1655 e 

H2-OPA 37.7 - 

H2-TDPA 38.4 - 

H2-ODPAd 29.4  

Cd-ODPA  25 - 

 

Table 2-1. 31P NMR chemical shifts of the phosphorus containing surfactants and 

precursors.  All spectra were taken in CDCl3 at room temperature and referenced to tri-
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methylphosphate ( δ = 3.0 ppm). a Prepared by heating H2-ODPA and TOPO (1:2 w/w) 

under Ar to 290 ˚C and then dissolving the mixture in CDCl3. b Cadmium 2-

ethylhexanoate. c 1J (31P-125Te). d Solvent: CD3OD/CH3CH2OH (1:3 v/v). 

 

2.4 Characterization of Reaction Products 

Phosphine oxide. In situ 31P NMR spectroscopy was used to monitor the reaction 

of Cd-OA or Zn-OA with TBPSe in a hydrocarbon solvent under vacuum in flame sealed 

NMR tubes. In both the case of Cd and Zn the disappearance of TBPSe proceeds with the 

formation of TBPO, which was verified by the addition of an authentic sample to the 

NMR sample as well as by detection with mass spectroscopy (Figure 2-3). In several 

examples, the total concentration of TBPSe and TBPO was constant throughout the 

reaction (within ± 2%), versus an internal standard (ethylphosphonic acid diethyl ester), 

which requires that TBPO is the only major product of TBPSe decomposition. A fast 

atom bombardment – mass spectrum (FAB-MS) of the crude reaction mixture shows a 

strong peak at m/z = 219 corresponding to the [TBPO+H]+ ion (Figure 2-4). Similar to the 

synthesis in hydrocarbon solvents, a synthesis of CdSe, in TOPO solvent using TBPSe as 

the Se precursor, also afforded TBPO as one of the major reaction products. Analysis of a 

crude reaction mixture using FAB-MS showed a strong peak at m/z = 219 that 

corresponds to the [TBPO + H+] ion (Figure 2-5).  
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Figure 2-3. Time evolution of the 31P NMR spectrum of the reaction between TBPSe and 

Cd-OA in n-nonane-d20 at 380 K. Spectra were collected at 0, 140, 1110, and 2145 

seconds respectively. 
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Figure 2-4. FAB-MS spectrum of the reaction between Cd-OA and TBPSe. [TBPO+H]+ 

(m/z= 219) 
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Figure 2-5. FAB-MS of the reaction between Cd-ODPA and TBPSe in TOPO. 

[TBPO+H]+ (m/z= 219), [TOPO+H]+ (m/z=387), and [2TOPO+H]+ (m/z=774) 
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Carboxylic acid anhydride. In addition to the conversion of TBPSe to TBPO, 

the formation of oleic acid anhydride ((OA)2O) was observed in the 13C NMR spectrum 

of reactions between Zn-OA or Cd-OA and TBPSe. In situ analysis of the reaction 

products showed new peaks at δ = 168.1, 129.8, 129.4 and 35.1 ppm not present before 

heating the mixture. Comparison of this spectrum with an authentic sample of (OA)2O 

confirmed the assignment (Figure 2-6). Control experiments showed that heating the Cd-

OA stock solution (at 120 ºC in degassed and sealed NMR tube for 2 hours) or pure H-

OA (at 120 ºC under dynamic vacuum for 2 hours) did not produce detectable amount of 

(OA)2O by 1H and 13C NMR. In several runs, the appearance of the α-methylene peak (1H 

NMR) of (OA)2O (δ = 2.50 ppm) matches the disappearance of the 31P NMR resonance 

of TBPSe (within ±2%). Similar observations were made in the synthesis of other metal 

chalcogenides as well as in the reactions that were conducted in the presence of added tri-

alkylphosphine (Table 2-2). 

. 
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Figure 2-6. 13C NMR spectrum of (A) the reaction between Cd-OA and TBPSe and (B) 

an authentic sample of (OA)2O in n-nonane-d20. *: (OA)2O peaks, 168.1 ppm: (-

CH2CO)2O, 129.8 and 129.4 ppm: -CH=CH-, 35.1 ppm (-CH2-COO)2O. ∆: H-OA peaks, 

180.1 ppm: -CH2COOH, 129.6 ppm: -CH=CH-, 34.8 ppm -CH2-COOH. The small peak 

at ~180 ppm in the (OA)2O spectrum is due to the presence of an H-OA impurity in the 

commercial sample. 
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 Precursors Surfactant/Solvent Identified Products (characterization) 

CdSe TBPSe/Cd-ODPA H2-ODPA/TOPO TBPO (FAB-MS) 

CdSe TOPSe/Cd-ODPA H2-ODPA/TOPO ODPA anhydride (31P NMR, 31P-31P COSY) 

CdSe TBPSe/Cd-ODPA H2-ODPA/TOPO, TBP ODPA anhydride (31P NMR) 

CdSe TBPSe/Cd-OAa H-OA/C10D22 TBPO (31P NMR), (OA)2O (13C NMR) 

CdSe TBPSe/Cd-OAa,b H-OA/C10D22, TBP TBPO (31P NMR), (OA)2O (13C NMR) 

CdS TBPS/Cd-OAa H-OA/C10D22 TBPO (31P NMR, FAB-MS), (OA)2O (13C NMR) 

CdTe TBPTe/Cd-OAa H-OA/C10D22 TBPO (31P NMR), (OA)2O (13C NMR) 

ZnS TBPS/Zn-OAa H-OA/ODE TBPO (31P NMR, FAB-MS), (OA)2O (13C NMR) 

ZnSe TBPSe/Zn-OAa H-OA/ODE TBPO (31P NMR, FAB-MS), (OA)2O (13C NMR) 

ZnTe TBPTe/Zn-OAa,c H-OA/C10D22, TBP TBPO (31P NMR), (OA)2O (13C NMR) 

 

Table 2-2. Spectroscopically characterized reaction products from the synthesis of group 

II-VI nanocrystals. COSY: correlation spectroscopy. C10D22: n-decane-d22. a In degassed 

and flame sealed NMR tube. b TBP:TBPSe = 1:1 (mol/mol). c TBP:TBPTe = 1:1 (w/w). 

 

Phosphonic acid anhydride. Aliquots from reactions of Cd-ODPA with TOPSe 

or TBPSe in TOPO show the disappearance of TOPSe and the appearance of 31P NMR 

resonances in the range of δ = 10 - 33 ppm. Immediately after injecting TOPSe into a hot 

mixture of TOPO and Cd-ODPA, several multiplets appear in the 31P NMR spectrum at δ 

= 32, 29, 28, and 24 ppm (Figure 2-7). At longer reaction times, additional multiplets 

could be observed in the range of δ = 10 - 23 ppm. 31P homonuclear correlation 

spectroscopy (COSY) shows that the splitting pattern of these peaks can be explained by 

31P - 31P through-bond coupling (J31P - 31P = 35 - 38 Hz) (Figure 2-8). The chemical shift 
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and magnitude of the coupling constants are in the range of reported values for other 

anhydrides of phosphonic acids (δ = 20 - 30 ppm and 2J31P - 31P = 25 - 49 Hz, for 

pyrophosphonic acid17 and tris(tert-butyl)triphosphonic acid18) suggesting similar 

anhydride linkages may explain the coupling patterns observed in our spectra. Further 

confirmation of an anhydride linkage being responsible for the multiplets was provided 

by addition of water to the reaction mixture at the reaction temperature. Upon adding 

water, the multiplets in the 31P NMR spectrum were immediately replaced by two peaks 

at δ = 34 and 24 ppm, which are in the range of the resonances observed for H2-ODPA in 

the presence of TOPO (Figure 2-9). In addition, the 1H NMR showed an increase in the 

amount of the acid proton. 

 



 37

 

20304050

20253035

Chemical Shift (ppm)

 

 

Figure 2-7. 31P NMR spectrum of the a CdSe synthesis in TOPO. The crude reaction 

mixture was dissolved in CDCl3. Inset shows magnified view of 20-35 ppm of the 

spectrum. TOPO, δ = 48.7 ppm, TOPSe, δ = 36.3 ppm.   
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Figure 2-8. 31P-31P COSY spectrum of a CdSe synthesis. Peaks of TOPO and TOPSe 

give no cross peak and are not shown. The crude reaction mixture was dissolved in 

CDCl3 and flame sealed in an NMR tube under Ar.   



 39

 

40 35 30 25 20
31P NMR Chemical Shift (ppm)

A

*

B*

C

 

Figure 2-9. The effect of added water on the 31P NMR spectrum of a TOPSe and Cd-

ODPA reaction mixture in TOPO. A) before and B) after adding water to the reaction. C) 

31P NMR of a 2:1 w/w mixture of TOPO and H2-ODPA. * TOPSe peak. 
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     To further clarify the role of water in the synthesis of CdSe in TOPO, control 

experiments were carried out by adding water (100 mg) to the reaction after the second 

degassing but before the TOPSe injection. After injection aliquots of this reaction show 

the appearance of 31P multiplets at δ = 20 - 30 ppm that are replaced by two peaks at δ = 

34 and 24 ppm at longer times (~ 1 hour). To confirm that the added water is indeed 

accessible to the TOPO solution at the reaction temperature, we also carried out a control 

experiment in which H2
18O (Isotech, 95% 18O) was injected to a mixture of TOPO and 

Cd-ODPA at 290 ˚C. Both FAB-MS and 31P NMR showed rapid formation of 18O 

substituted TOPO (Figure 2-10), which is consistent with an oxygen exchange reaction 

between H2
18O and TOPO.19 These experiments ambiguously demonstrated that water 

not only exists in the mixture of TOPO and Cd-ODPA at 290 ˚C but also interacts 

chemically with TOPO, and presumably, other molecules.  

54.254.354.4

TOP18O

Chemical Shift (ppm)

TOP16O

 

Figure 2-10. 31P NMR (CH3OH/CDCl3) of TOPO after injecting H2
18O to a mixture of 

TOPO and Cd -ODPA at 290 °C. This sample was taken 24 min after the injection of 

H2
18O. 
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Chapter 3 

 

 Kinetics and Mechanism of the Synthesis of 

Group II-VI Nanocrystals 

 

Reproduced in part with permission from “Liu, H.; Owen, J. S.; Alivisatos, A. P. 

“Mechanistic Study of Precursor Evolution in Colloidal Group II-VI Semiconductor 

Nanocrystal Synthesis” J. Am. Chem. Soc. 2007, 129, 305-312, Copyright 2007 

American Chemical Society. 

 

3.1 Introduction 

The growth mechanism of nanocrystal is one of the several unanswered key 

questions in the field of nanocrystal synthesis. Such information would greatly help 

optimizing current nanocrystal synthesis and designing of new synthetic protocols. 

Previous studies toward this goal are heavily focused on following the time evolution of 

nanocrystal size and shape by using TEM, UV-Vis, and PL techniques. Peng and 

Mulvaney have studied the time evolution of CdSe nanocrystals in TOPO/ODPA and 

ODE/OA mixtures, respectively.1-3 Their studies have concluded that the nucleation and 

growth of CdSe nanocrystal are well separated. Peng explained the shape evolution of 

CdSe nanorod by using a diffusion-limited growth model. However, since the techniques 
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used in these studies only probe the dynamics of nanocrystals, little to no information is 

obtained about the molecular mechanism of nanocrystal nucleation and growth. For 

example, the term ‘monomer’ is frequently used to refer to the basic growth unit of 

nanocrystal. However, not much is known about the structure of monomer and how 

monomer is produced and converted into nanocrystals.  

Our approach to characterize the growth kinetics of nanocrystal and study the 

growth mechanism is very different from these nanocrystal-based ones. With the 

information presented in the last chapter, it is now possible to accurately measure the 

kinetics of phosphine chalcogenides decay and analyze the chemistry associated with the 

precursor decomposition process. Our results suggest that phosphine chalcogenide reacts 

with the metal precursor to produce a soluble form of semiconductor, which we believe is 

the ‘monomer’.  

 

3.2 Kinetics of Phosphine Chalcogenide Cleavage.  

Reaction kinetics of the CdSe and CdS syntheses were studied by following the 

concentration of phosphine chalcogenide using 31P NMR spectroscopy. The decay of 

phosphine chalcogenide can be fit to a single exponential decay (Figure 3-1) and the 

corresponding kobs extracted from the fit (Table 3-1). The cleavage rates of phosphine 

chacogenides increase in the order S < Se < Te and Zn < Cd by comparing their 

respective kobs or conversion vs. time. It was also observed that Cd-OA reacts more 

rapidly than does Cd-ODPA and both TBPSe and TOPSe are much more reactive than 

the sterically hindered i-TPPSe. A control reaction showed that in the absence of Cd-OA 

or Cd-ODPA, TOPSe still decomposed in a mixture of TOPO and H2-ODPA at 290 °C 
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(Table 3-1 #8), although at a rate two orders of magnitude slower than in the presence of 

Cd-OA or Cd-ODPA. Activation parameters for TBPSe decay in the presence of Cd-OA 

were determined from the temperature dependence of the exponential fits to the decay 

curve (∆H‡ = (62.0 ± 2.8) kJ·mol-1, ∆S‡ = – (145 ± 8) J·mol-1·K-1, Figure 3-2).  

The effect of temperature and concentration of precursor on the decay kinetics of 

phosphine selenide was tabulated in table 3-2 and 3-3. The kinetics behavior of the 

reactions conducted in ODE using oleic acid as the surfactant is very different from that 

of the reactions conducted in TOPO using phosphonic acid as the surfactant. In the 

TOPO/ODPA based reactions, the rate of phosphine selenide decay highly depends on 

the ODPA/Cd ratio and is not sensitive to the Se/Cd ratio. High ODPA/Cd ratio is 

associated with rapid decay of phosphine selenide. In contrast, in the ODE/OA based 

reactions, the opposite is true. In these reactions, the Cd/OA ratio does not affect the 

reaction kinetics very much. The Se/Cd ratio, on the contrary, greatly changes the 

reaction kinetics. The kobs of phosphine selenide decay almost increases linearly with 

increasing Se/Cd ratio. These differences in the reaction kinetics suggest that the rate 

limiting step of phosphine selenide cleavage is different in the two types of reaction. It is 

likely that this difference may arise from the different structure of the cadmium 

precursors. The Cd-ODPA complex used in the TOPO/ODPA synthesis is polymeric and 

less reactive than the Cd-OA complex used in the ODE/OA synthesis. One possible 

explanation for the observed difference in the reaction kinetics is that excess free 

surfactant helps to break the Cd-ODPA complex into certain molecular Cd complex, 

which has a higher activity than its polymeric counterparts.  
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For all the reactions carried out in TOPO under anhydrous conditions, the 

conversion of trialkyl-phosphine chalcogenide approaches partial conversion (~80%) 

even though Cd was used in excess (~10%) in most of these reactions.1 The conversion of 

TBPSe is even lower (~70%) when reacted with Cd-OA in a non-coordinating solvent at 

relatively low temperature (360 K – 400 K). Interestingly, if water was added to the 

TOPO based reaction, either before or after the injection of TOPSe, the conversion of 

TOPSe could be increased to almost 100% (Figure 3-1).  
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Figure 3-1. Single exponential fits to the disappearance of TOPSe in the presence of Cd-

ODPA in TOPO. Cd-ODPA and TOPSe in TOPO at 260 °C. For the reactions with added 

water, 100 mg of water was added to the flask at 100°C via a syringe after the second 

degassing but before TOPSe injection.  
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Material Precursors Solvent (°C) kobs × 103

 (s-1) 
 Conversion 

(%)a 
Note 

1 CdSe Cd-ODPA/TOPSe TOPO (290) 1.7±0.4 84 b 

2 CdSe Cd-ODPA/TOPSe TOPO (260) 1.30±0.08 82 c 

3 CdS Cd-ODPA/TOPS TOPO (290) 0.90±0.54 30 d 

4 CdSe Cd-OA/TOPSe C9D20 (117) 1.51±0.04 65 e 

5 CdSe Cd-OA/TBPSe C10D22 (127) 2.57±0.13 68 e 

6 CdSe Cd-OA/i-TPPSe C9D20 (127) 0 0 f 

7 ZnSe Zn-ODPA/TOPSe  TOPO (290) 0 0 g 

8 - H2-ODPA/TOPSe TOPO (290) - 15 h 

 

Table 3-1. Exponential fits to the disappearance of phosphine chalcogenide. a 

Conversions were calculated using either the amount of TOPSe injected and [TOPSe] of 

the last aliquot (TOPO based synthesis) or the fitting results (in situ studies). The 

reported error in kobs is the uncertainty from the fit to a single exponential. b Double 

degassed, a mixture of TOPSe (0.70 g) and toluene (0.30 g) was injected at 320 °C. c 

Double degassed. d Double degassed, a mixture of TOPS (0.65 g) and toluene (0.30 g) 

was injected at 320 °C. e in-situ NMR monitoring. f in-situ NMR monitoring, reaction 

time = 20 min. g Double degassed, reaction time = 100 min. h Reaction time = 4 hr. 
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Figure 3-2. Eyring plot of TBPSe reaction with Cd-OA in n-decane-d22. The reactions 

were carried out at 358 K, 380 K, 390 K, and 400 K. T: temperature (Kelvin). The inset 

shows a representative single exponential fit to the integrated TBPSe resonance at 380 K. 
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Table 3-2. Decay constant of TBPSe in the presence of Cd-OA and H-OA in ODE. For 

all the reagent concentrations, 1 eq. is 0.36 mol·kg-1. The amount of OA indicates the 

total amount of OA used in the synthesis, including that in the form of Cd-OA complex. 

a: TOPSe was used instead of TBPSe. 

 

 

 

 

 

 

 Temp. Cd (eq.) OA (eq.) TBPSe (eq.) Decay constant (s) 

1 399.8K 1 4 1 388 ±19 

2 379.5K 1 4 1 1002 ±87 

3 389.6K 1 4 1 603±27 

4a 389.6K 1 4 1 664 ±19 

5 389.6K 1 4 0.5 911 ± 122 

6 389.6K 0.5 2 1 673±59 

7 389.6K 0.5 2 0.5 1027 ±81 

8 389.6K 0.5 4 1 581±52 

9 389.6K 0.5 2 2 332 ±13 
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Table 3-3. Decay constants of TOPSe in the presence of Cd-ODPA and TOPO. For all 

the reagent concentrations, 1 eq. is 1.6 mol·kg-1. The amount of ODPA indicates the total 

amount of ODPA used in the synthesis, including that in the form of Cd-ODPA complex. 

a: 108mg of water was added; b: 94 mg of water was added; c: 0.5 eq ZnO and 0.5 eq CdO 

was used; d: Use Cd(Me)2; e: 0.5 eq P2O5 was added. 

 

 

 

 T (ºC) Cd (eq.) ODPA (eq.) TOPSe (eq.) Decay constant (s)

1 260 1 2 0.9 768 ±44 

2 260 1 2 0.9 710 ±80 

3 260 1 2 1.7 809±66 

4 260 0.5 1 0.9 1213 ±148 

5 260 1 4 0.9 360±58 

6 260 0.5 2 0.9 338 ±47 

7a 260 1 2 0.9 393 ±37 

8b 260 1 2 0.9 382 ±26 

9c 260 0.5 2 0.9 789 ±79 

10 270 1 2 0.9 671 ±72 

11 d 260 1 2 0.9 335 ±35 

12e 260 1 2 0.9 5575 ±1000 
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3.3 Mechanism of Precursor Decomposition and Monomer Formation 

The formation of acid anhydride and dependence of reaction kinetics on the 

surfactant concentration suggest that phosphonic and carboxylic acids are also reactants 

responsible for the conversion of precursor molecules to the inorganic materials. In 

particular, the conversion of TOPSe and TBPSe to their corresponding phosphine oxides 

is linked to the formation of anhydrides of n-octadecylphosphonic acid and oleic acid 

suggesting that phosphonic and carboxylic acids are responsible for cleavage of the 

phosphorus - chalcogen double bond. A partial mechanism for this transformation is 

shown below in Scheme 3-1.  
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Scheme 3-1. Proposed reaction pathway for precursor conversion.  

 

TOPSe-Cd2+ coordination. Alkyl and aryl phosphine chalcogenides have been 

shown to coordinate to a large number of transition metal ions, including Cd2+ and Zn2+, 

resulting in a weakening of the P=E (E=S, Se, Te) double bond.4-6 Our 31P NMR studies 

in Chapter 2 show that the resonance of TOPSe shifts to higher ppm value along with a 

decreased 1J31P-77Se in CDCl3 solution of cadmium 2-ethylhexanoate, suggesting the 
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formation of a TOPSe-Cd2+ complex.7-9 These spectroscopic changes were not observed, 

however, when TOPSe was combined with Cd-ODPA supporting a weaker coordination 

of TOPSe to Cd-ODPA than Cd-OA.  This difference may be due, in part, to a more 

coordinatively unsaturated cadmium center in Cd-OA and offers an explanation of the 

faster TOPE cleavage by Cd-OA.  

Cleavage of the P=E (E = S, Se, Te) bond. A number of experimental 

observations suggest that the TOPE precursor is converted to cadmium and zinc 

chalcogenides by a substitution reaction in which a Lewis acidic cadmium or zinc center 

activates TOPE to nucleophilic attack by phosphonate or carboxylate. First, TOPSe 

cleavage proceeds at a rate two orders of magnitude faster in the presence of Cd-ODPA 

and TOPO than H2-ODPA and TOPO alone, providing support for the Lewis acid 

activation step. Second, the large and negative entropy of activation extrapolated from the 

Eyring plot in Figure 3-2 suggests that the steps leading to TBPSe cleavage in the 

presence of the Lewis acidic cadmium center involves the association of two or more 

molecules. This suggestion is made tentatively, however, since the single exponential fits 

to TOPSe decay are not likely to result from first order kinetics. This is especially true 

because the reactions approach partial conversion and were not run under pseudo first 

order conditions. Third, the sterically hindered i-TPPSe reacts with Cd-OA much slower 

than does TBPSe which argues against unimolecular decomposition of the P=Se 

fragment.  

Finally formation of phosphine oxides via cleavage of P=X double bonds 

frequently involves two steps where an electrophile is first bound to X followed by 

addition of an oxygen nucleophile to the phosphorus center. Previous studies of alkyl and 
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aryl phosphine selenides and sulfides (X = Se, S) have shown that conversion to the 

corresponding oxide under non-oxidizing conditions can proceed via a Lewis acid 

catalyzed substitution mechanism. In these studies triphenylphosphine selenide or sulfide, 

when activated by trifluoacetic anhydride, undergoes attack by nucleophiles as weak as 

trifluoroacetate yielding triphenylphosphine oxide.10,11 In a similar vein, the accepted 

mechanisms for the cleavage of Wittig (X = CR2) and aza-Wittig (X = NR) reagents all 

involve addition to the phosphorus center upon reaction of an electrophile with the 

nucleophilic terminus of the P=X double bond.12 All these points argue for a similar 

cleavage reaction under our conditions where nucleophilic addition to the phosphorus 

center proceeds upon Lewis acid activation of TOPE by the cadmium or zinc precursor.  

Based on the above arguments, a hypothetical transition structure of the TOP=E 

cleavage is shown in Figure 3-3. During this process, the phosphorous atom is attacked 

by an incoming nucleophile X, weakening the P-X bond and partially breaking the P=E 

bond. Quantum chemical calculation (see next chapter) suggests that this nucleophilic 

attack is more likely to be an intramolecular reaction rather than an intermolecular one, 

due to the high energy penalty of forming charged species in the common solvents used 

in nanocrystal synthesis. 

 

 

 

Figure 3-3 Hypothetical transition structure for TOPE cleavage.  
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Finally, our results argue against other proposals for the mechanism of ME 

(M=Cd, Zn, E=S, Se, Te) nanocrystals formation from tri-alkylphosphine chalcogenides 

and phosphonic and oleic acid complexes of cadmium and zinc. In particular, pathways 

involving formation of atomic cadmium, zinc or chalcogen do not adequately explain our 

results. These reactions can be expected to display positive entropies of activation since 

two or more molecules should be generated in the homolysis reaction. Neither do such 

pathways easily explain the clean formation of phosphonic acid anhydrides or oleic acid 

anhydride and tri-alkylphosphine oxide observed in this study.  

 

3.4 Implications to the Synthesis of Group II-VI Nanocrystals 

Reactivity of phosphine chalcogenides can be readily predicted from the 

dissociation energy (D) of the P=X bond and the steric hindrance of the organic skeleton. 

For the precursors that only differ in the chalcogen atom, the reactivity is controlled by 

the D of the P=X bond, which is known to follow the trend: P=S > P=Se > P=Te. Based 

on this information, we can readily predict that for different TOPX, the relative rate of 

reaction will be TOPTe > TOPSe > TOPS. This trend has been verified for TOPSe and 

TOPS in the current study by measuring their decay kinetics in the presence of Cd-ODPA 

in TOPO. Reaction kinetics of TOPTe was not measured in the current study. TOPTe 

reacts with oxygen rapidly at room temperature, which makes the experiment more 

difficult. Preliminary results based on the rate of color change did suggest that the 

reaction kinetics of TOPTe was faster than that of TOPSe, which was also consistent with 

previous observation.13  



 55

For the precursors that only differ in the organic skeleton, the relative reaction 

rate is controlled by the steric hindrance near the phosphorous atom. It is well known that 

in a SN2 reaction, the reaction rate will decrease with increasing steric hindrance near the 

reaction center. This effect is best demonstrated by comparing the reactivity of i-TPPSe 

and TBPSe in the presence of Cd-OA (Table 3-1). No reaction was observed between i-

TPPSe and Cd-OA at 127ºC within 20 min while under the same reaction condition, most 

of TBPSe was consumed. It was also shown recently that TBPTe, which has three butyl 

groups on phosphorous, is more reactive than TOPTe, which has three relatively larger 

octyl groups.14  

Metal precursor. The nature of metal precursor also affects the reaction rate, 

since the reaction is ‘catalyzed’ by the metal ion in the first binding step. The Lewis 

acidity of the metal ion determines its ‘catalytic’ efficiency. For example, TOPSe uses its 

Se atom, which is a soft base, to bind Cd2+. One can thus predict that Zn2+, a harder 

Lewis acid than Cd2+, will bind to TOPSe weaker than Cd2+ does. In addition, Zn2+ also 

binds to the oxygen atom of H2-ODPA and H-OA, a strong Lewis base, stronger than 

Cd2+ does. As a result, the reaction rate of ZnSe nanocrystal synthesis should be slower 

than that of CdSe nanocrystal synthesis. This prediction is indeed observed in the present 

work. Under the same reaction condition, the reactivity of Zn-ODPA complex toward 

TOPSe is much lower than that of Cd-ODPA (Table 3-1). Using the ‘doubly degassed’ 

protocol, we did not observe any change in the 31P NMR spectrum after heating the 

reaction at 290 °C for over 100 min. However, the formation of ZnSe nanocrystals is 

observed, although in very low yield, as determined by transmission electron microscopy 

and UV-Vis absorption spectroscopy. 
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The role of surfactant as a reagent. Surfactants like H2-ODPA and H-OA have 

been extensively used to control the growth of nanocrystals. Their major role has long 

been believed to be selective adhesion to the nanocrystal surface,1,15 as well as controlling 

monomer solubility.2,3,16 However, our results show that H2-ODPA and H-OA are also 

reactants in the TOPSe cleavage. Hence changing the concentration of these 

surfactants1,15,17 will likely change the TOPE cleavage kinetics in addition to the binding 

of surfactants to the nanocrystal surface. This is especially important given that the 

alkylphosphine chalcogenide cleavage is likely the reaction leading to the formation of 

semiconductor monomers and hence the rate of this cleavage will influence particle 

nucleation and growth. 

Further, as the TOPSe cleavage reaction proceeds, the H2-ODPA and H-OA 

surfactants are converted to their corresponding anhydrides and selenium is liberated into 

the solution, which can both affect the identity of the reactive cadmium complex. These 

changes to the cadmium precursor and surfactant molecules undoubtedly impact the 

mechanistic details of the TOPE binding and cleavage further limiting the interpretation 

of the reaction kinetics and yield. Several of our observations highlight this point. That 

added water leads to an increase in the TOPSe conversion suggests that cadmium 

coordinated by H2-ODPA is more reactive than when coordinated by the anhydride of 

ODPA.18,19 This does not, however, explain the low conversion observed in the CdSe 

synthesis using Cd-OA and TBPSe in a non-coordinating solvent, since (OA)2O should 

bind cadmium only weakly. The limited yield in this case may arise from the build up of 

dissolved monomers which compete with TOPSe for binding to Cd-OA. Additionally, the 
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reactivity of Cd(OA)2 may be decreased by coordination of the phosphine oxide 

product.6,20  

Solvent can affect the reaction kinetics and conversion in several ways. The 

polarity of the solvent determines the amount of water in the reaction mixture and thus 

changing the overall conversion at long reaction time. The solvent polarity also affects 

the relative free energy of the substrates and transition states, thus changing the activation 

free energy. A more complicated scenario arises when free phosphine was used in the 

synthesis as a co-solvent. Phosphine sulfide, selenide, and especially telluride have been 

shown to undergo chalcogen exchange with free phosphine.21  
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Since the substitution on phosphorus is expected to affect the reaction rate, 

redistribution of chalcogen atom to a different phosphine will change the overall reaction 

kinetics. On the other hand, this also points to a possible way to further manipulate the 

reaction rate.  

Water content in the reaction mixture significantly changes the reaction kinetics. 

The amount of water in the reaction highly depends on the detailed experimental 

procedure. For example, aging of Cd precursor has been shown to slow the growth rate 

and increase the aspect ratio of nanorods.22 We found that condensed water droplets 

formed during the CdO decomposition evaporate completely under Ar flow within two 

days. The reported change in the reaction kinetics and aspect ratio of the nanorod could 

potentially be due to the effect of removing water. 
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Chapter 4  

 

Density Functional Theory Study of the Precursor 

Evolution in the Synthesis of CdSe Nanocrystals 

 

4.1 Introduction 

In the previous chapters, I have presented an experimental study on the reactions 

between the precursors in the synthesis of CdSe and other group II-VI nanocrystals. A 

mechanism was proposed for the decomposition of the precursors and formation of 

monomer. However, experimental results only provided limited information on the 

detailed reaction pathway. Especially, direct characterization of monomer in the growth 

solution has not been possible due to the technical difficulties associated with detecting 

this unstable, reactive intermediate. To the best of our knowledge, the structure of the 

monomer and the detailed reaction pathway of its generation have not been discussed in 

the literature.  

In this chapter, I use density functional theory (DFT) calculation to study the 

detailed reaction pathway of precursor decomposition and monomer formation in the 

synthesis of CdSe nanocrystals. The particular system I choose to study is the synthesis 

of CdSe nanocrystal using phosphine selenide and cadmium carboxylate in a non-polar 

solvent (e.g., n-octadecene, or ODE) using a carboxylic acid as surfactant. This synthesis 

has been widely used in the synthesis of cadmium and zinc chalcogenides nanocrystals.1 
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Compared to the CdSe nanocrystal synthesis in TOPO using phosphonic acid surfactant, 

the chemistry of this ODE/carboxylic acid based synthesis is simpler and better 

characterized.  

The calculations show that phosphine selenide binds to cadmium carboxylate 

using its selenium atom to give a (R2
3P=Se)Cd(R1COO)2(R1COOH)x (x=0, 1) complex. 

The phosphine selenide in this complex is attacked by a carboxylate ligand of the same 

complex in an intramolecular SN2 reaction to give a pentavalent phosphorous 

intermediate. The selenium atom of this intermediate accepts a proton from a carboxylic 

acid ligand, breaking the P-Se bond and eventually forming a Cd(SeH)(R1COO) complex, 

phosphine oxide, and carboxylic acid anhydride. We suggest that this Cd(SeH)(R1COO) 

complex is the possible monomer for the growth of CdSe nanocrystal.  

 

4.2 Theoretical Method 

Unless otherwise specified, all calculations were carried out using pcGAMESS 

program2 at the B3LYP3-6 (using VWN5 functional) level of theory. The following basis 

sets7 (spherical harmonic functions) were used: SDB-ccPVTZ basis in conjunction with 

Stuttgart–Dresden–Bonn relativistic effective core potential (ECP) for Cd ((8s7p6d2f1g) 

→ [6s5p3d2f1g]) and Se ((14s10p2d1f) → [3s3p2d1f]);8 cc-PVTZ basis for P 

((15s9p2d1f) → [5s4p2d1f]);9 and 6-31G*+ basis for O, C, and H.10 The molecular 

geometries were relaxed in vacuum without constrain until the maximum energy gradient 

is smaller than 5×10-5 hartree/bohr. Frequency calculation was performed at the same 

level of theory to confirm that the obtained geometry is a minima or transition state, as 

appropriate. Thermodynamic properties were calculated at 300 K assuming rigid rotor 
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model and ideal gas behavior. Intrinsic reaction coordinate (IRC) calculations were 

performed to ensure that the transition states structure connects two concerned minima. 

The electrostatic solvation effect was described by polarization continuum model (PCM) 

using n-heptane as the solvent. The geometry optimized in vacuum was used in a single 

point PCM energy calculation. The reported thermodynamic quantities were obtained in 

vacuum unless otherwise specified.  

 

4.3 Results and Discussion 

Verification of computational method. Extensive calculations were carried out 

to ensure that our choice of computational method could accurately reproduce the 

geometry and energy of the modeled chemistry. The reliability of the calculated geometry 

was checked by comparing optimized structure of tri-methyl-phosphine selenide and a 

phosphine selenide - cadmium complex (Cd[R2P(Se)C(S)NPh]2, R=CH3) with the 

experimental results. Within B3LYP level of theory, we found that the popular Lanl2dz 

ECP and basis11-13 for Cd, Se, and P atoms could not accurately reproduce the 

experimental observed geometries though addition of polarization and diffusion functions 

(Lanl2dzdp14 basis for Se and P atoms) significantly improves the result. Use of cc-PVTZ 

quality of basis sets for the post-second-row heavy atoms (SDB-ccPVTZ for Cd and Se, 

cc-PVZT for P) is necessary to reproduce the structure of the two model compounds. The 

quality of the energy calculation was checked by computing the homolytic Cd-Se bond 

dissociation energy (BDE) of CdSe molecule in gas phase. The BDE calculated using 

B3LYP/SDB-cc-PVTZ method slightly underestimate (~2 - 6 kcal·mol-1) the highly 

accurate CCSD(T)/aug-cc-PVnZ-PP (n=T, Q)15 result.  
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Basis P=Se Bond 

(error%) 

P-C Bond 

(error%) 

∠SePC 

(error%) 

∠CPC 

(error%) 

Lanl2dza 2.267 Å  1.873 Å 113.9º 104.7º 

Lanl2dzdpb 2.147 Å 1.852 Å 114.4º 104.2º 

cc-PVTZc 2.120 Å 1.835 Å 114.5º 104.0º 

Exp 2.111 Å 1.786 Å 113.1º 105.7º 

 

Table 4-1. B3LYP Optimized structure of tri-methylphophine selenide. a: Lanl2dz for Se 

and P, 6-31G*+ for O, C, and H. b: Lanl2dzdp for Se and P, 6-31G*+ for O, C, and H. c: 

SDB-ccPVTZ for Se, ccPVTZ for P, 6-31G*+ for O, C, and H. Experimental value are 

obtained from x-ray diffraction.16 

 

Basis 

Cd Se P S 
Cd-Se (Å) Se=P (Å) Cd-S (Å) 

Lanl2dz Lanl2dzdp Lanl2dzdp Lanl2dzdp 2.759 2.207 2.629 

SDB-

ccpvtz 

SDB-

ccpvtz 
Lanl2dzdp cc-PVTZ 2.695 2.194 2.554 

SDB-

ccpvtz 

SDB-

ccpvtz 
cc-PVTZ cc-PVTZ 2.694 2.182 2.551 

Exp 
2.613-

2.625 

2.145-

2.152 

2.488-

2.523 
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Table 4-2. Selected bond length of optimized structure of Cd[R2P(Se)C(S)NPh]2. 6-

31+G* basis was used for O, N, C, and H. R was set to methyl group to save 

computational time while the experimental value17 was reported for R = cyclohexyl. 

 

Method Singlet CdSe BDE Triplet CdSe BDE 

B3LYP/SDB-ccPVTZ 13.22 13.75 

CCSD(T)/aug-ccPVTZ-PP 15.70 12.76 

CCSD(T)/aug-ccPVQZ-PP 19.0 14.89 

 

Table 4-3. Calculated bond dissociation energy (BDE) of CdSe molecule (kcal·mol-1). 

The BDE was corrected for BSSE, but not for zero point vibrational energy (ZPE). 

 

General comment on the theoretical modeling of CdSe nanocrystal synthesis 

using Cd(R1COO)2 and R2
3P=Se. In a typical synthesis of CdSe nanocrystal, cadmium 

oleate (Cd(R1COO)2, R1=Oleyl) and tri-n-butylphosphine selenide (R2
3P=Se, R2 = n-butyl) 

was heated in a mixture of non-polar solvent (e.g., ODE) and oleic acid. Several key 

mechanistic features of this reaction have been documented in the previous chapters.18 

First, the final reaction products are CdSe nanocrystals, phosphine oxide, and anhydride 

of the surfactant ligand. A balanced reaction is shown in Eq. (4-1).  

Cd(R1COO)2 + R2
3P=Se → CdSe + R2

3P=O + (R1COO)2     R1,R2 = alkyl                   (4-1) 

Second, the reaction involves R2
3P=Se binding to Cd(R1COO)2 using the Se atom. 

This binding event is likely followed by a nucleophilic attack on the phosphorous atom 

by a carboxylate ligand. Increasing steric hindrance near the phosphorous atom greatly 
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decreases the reactivity of phosphine selenide. Third, no intermediate was detected when 

the reaction was monitored in situ using 31P NMR spectroscopy in the range of ~360 K to 

400 K.19 Finally, the reaction exhibits a large activation entropy (∆S≠= - (38±2) cal·mol-

1·K-1, in the temperature range of 380 K to 400 K). Based on these observations, the 

following reaction mechanism (scheme 4-1) was proposed to explain the formation of 

CdSe nanocrystals and other reaction products.  
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Scheme 4-1. Proposed reaction mechanism of CdSe nanocrystal synthesis from Cd(OA)2 

and phosphine selenide. R1=oleyl and R2=butyl. 

 

In this mechanism, phosphine selenide molecule is first activated by coordination 

to a Lewis acidic cadmium center. The activated phosphine selenide is then attacked by a 

nucleophile, most likely a carboxylate or a carboxylic acid. This nucleophilic attacked 

and its subsequent reactions eventually break the P=Se bond and presumably generate the 

‘monomer’.  

In order to model this complex reaction at the ab initio level, we have adapted the 

following simplifications. First, to save computational time, long alkyl chains were 

substituted with hydrogen atoms (R1 = R2 = H). Though this is a standard practice in 

quantum simulation, it is important to note that replacing long alkyl groups with H atoms 

reduces the steric hindrance. The change in the steric hindrance effect is especially large 
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near the phosphorous atom. Second, we have decided not to consider solvation effect. 

This simplification should be justified since the reaction was run in a hydrocarbon 

solvent that has very low dielectric constant. To verify this assumption, the electrostatic 

solvation energy was calculated for the reactants and a number of intermidates using the 

geometry optimized in vacuum. The calculated solvation energies are mostly around 5±2 

kcal•mol-1. As a result, the relative free energy landscape of the reaction was not 

significantly changed by omission of the solvation effect. Finally, we choose to consider 

only the monomeric form of cadmium carboxylate (Cd(R1COO)2) as the cadmium 

precursor. In reality, multinuclear complex in the form of Cdx(R1COO)2x(R1COOH)y 

(x>1, y>0) could exist, especially at low temperature. However, this should not limit the 

interpretation of our results too much since most CdSe synthesis was carried out at very 

high temperature, under which condition monomeric form of cadmium carboxylate 

dominates due to its large entropy. For example, within B3LYP level of theory, ∆G of 

reaction (4-2) is negative at T > 475 K. In comparison, most CdSe syntheses were carried 

out at about 573 K. 

 Cd2(R1COO)4(R1COOH)2 → Cd(R1COO)2 + 2 R1COOH       R1 = H                         (4-2) 

Activation of phosphine selenide by binding to Cd(R1COO)2. 31P NMR 

resonance of R2
3P=Se (R2 = n-octyl) shifts to higher δ value in the presence of cadmium 

carboxylate. This change in the R2
3P=Se chemical shift suggests that R2

3P=Se bind to 

cadmium carboxylate with the Se atom. It was previously suggested that this binding 

event activates R2
3P=Se for the subsequent nucleophilic attack by carboxylate.  

Our DFT calculation shows that R2
3P=Se and R1COOH surfactant both bind to 

Cd(R1COO)2 at 298 K. Cd(R1COO)2 can form stable complex with up to 2 free R1COOH 
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molecules (R1=H) at 298 K. The binding of R2
3P=Se to Cd(R1COO)2(R1COOH)x (x=0, 1, 

2) are favored for x=0 and 1, but not for x =2 (R1 = R2 = H). Selected binding reactions 

and their corresponding free energy changes (∆G298) were tabulated in Table 4-4. Based 

on these free energy changes, the dominate species in a mixture of R2
3P=Se, 

Cd(R1COO)2, and R1COOH at 298 K are Cd(R1COO)2(R1COOH)2 and R2
3P=Se-

Cd(R1COO)2(R1COOH). At high temperature, ligand binding to Cd(R1COO)2 is less 

favored due to the large negative entropy change (∆S298) of these binding reactions. For 

example, dissociation of R2
3P=Se-Cd(R1COO)2(R1COOH) into R2

3P=Se-Cd(R1COO)2 

and R1COOH is favored above 407 K and the same is true for R2
3P=Se-Cd(R1COO)2 

dissociation into Cd(R1COO)2 and R2
3P=Se above 450 K.  

The formation of Se-Cd coordination bond between PR2
3Se and 

Cd(R1COO)2(R1COOH)x decreases the electron density on phosphorous atom and 

weakens the P=Se bond. Both of the changes make the phosphine selenide more 

susceptible to nucleophilic attack. In the following sections, we will focus on the reaction 

of the Cd(R1COO)2(R1COOH)x(R2
3P=Se) (x=0) complexes.  

    

Reaction ∆G298 ∆H298 ∆S298 

Cd(R1COO)2 + R1COOH → Cd(R1COO)2(R1COOH) -4.43 -15.47 -37.0 

Cd(R1COO)2(R1COOH) + R1COOH → Cd(R1COO)2(R1COOH)2 -5.08 -15.16 -33.8 

Cd(R1COO)2 + R2
3P=Se → R2

3P=Se-Cd(R1COO)2 -5.27 -15.29 -33.6 

Cd(R1COO)2(R1COOH) + R2
3P=Se → R2

3P=Se-Cd(R1COO)2(R1COOH) -4.86 -15.02 -34.1 

Cd(R1COO)2(R1COOH)2 + R2
3P=Se → R2

3P=Se-Cd(R1COO)2(R1COOH)2 3.66 -7.95 -38.9 

Cd(R1COO)2(R1COOH)2 + R2
3P=Se → R2

3P=Se-Cd(R1COO)2(R1COOH) + R1COOH 0.22 0.14 -0.28 
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Table 4-4. Thermodynamics (∆G298 and ∆H298: kcal·mol-1; ∆S298: cal·mol-1·K-1) of ligand 

binding to Cd(R1COO)2 (R1 = R2 = H). These values have not been corrected for basis set 

superposition error (BSSE). 

 

Reaction pathway of monomer formation. At relatively high temperature (> 440 K), 

R2
3P=Se-Cd(R1COO)2 1 (R1 = R2 = H) is more stable than other R2

3P=Se-

Cd(R1COO)2(R1COOH)x (x = 1, 2; R1 = R2 = H) complexes. In the following, we discuss 

the free energy changes for the decomposition of this complex at 573 K, which is a 

typical temperature used in the synthesis of CdSe nanocrystals. The overall reaction 

pathway is shown in Scheme 4-2. The reported free energies were referenced to the 

isolated reagents.  
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Scheme 4-2. Reaction Pathway of R2
3P=Se-Cd(R1COO)2 complex  

 

Formation of complex 1 from the two precursors is slightly uphill (∆G573K= 4.0 

kcal·mol-1) at 573 K, mainly due to the large entropic penalty of the molecular association 
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process. R2
3P=Se in complex 1 can be attacked by a carboxylate ligand of the same 

complex, overcoming a free energy barrier of 30.0 kcal·mol-1 (TS1-2, Figure 4-1) to give 

an intermediate 2 (∆G573K = 22.0 kcal·mol-1). This nucleophilic attack changes the 

phosphorous atom from a tetrahedral one in complex 1 into a distorted triangle-

bipyramidal one in the intermediate 2. Formally, this reaction partially breaks the P=Se 

bond to give a P-Se single bond and form a Cd-Se bond.  

Other pathway to intermediate 2 was also explored. In particular, we find that 

intermolecular nucleophilic attack by free R1COO- ion is not likely. This is due to the low 

polarity of the solvent, which makes creation of charged species, such as R1COO- ion, 

energetically prohibitive. For example, ∆G573K of eq. (4-3) is calculated to be 48.3 

kcal·mol-1 in n-heptane by using a polarization continuum solvation model (PCM). This 

free energy change is much higher than the activation free energies of the intra-molecular 

reaction pathways. 

R2
3P=Se-Cd(R1COO)2(R1COOH)2 →[R2

3P=Se-Cd(R1COO)(R1COOH)2]+ + HCOO- (4-3) 

 

 

Figure 4-1. Structure of TS1-2. The unit of the bond length is Å.  
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Further weakening of the bonding between Se and P is realized via proton transfer 

from a R1COOH surfactant molecule to the Se atom of 2. During this process, a R1COOH 

molecule binds to the Cd and Se atoms of 2 using its carbonyl oxygen and acidic proton, 

respectively, to give 3 (∆G573K = 31.8 kcal·mol-1). The Se atom in 3 accepts the acidic 

proton from R1COOH forming an ion pair 4 (∆G573K = 34.6 kcal·mol-1). This reaction 

formally breaks the covalent bond between P and Se atoms. The activation free energy 

(TS3-4, Figure 4-2) of this proton transfer reaction is 42.7 kcal·mol-1, the highest of all the 

transition states. 

 

Figure 4-2. Structure of TS3-4 

 

The phosphorous atom of the ion pair can be attacked by another carboxylate 

ligand of the same complex via transition state TS4-5 to give 5 (31.0 kcal·mol-1). Complex 

5 has a R1COO-PR2
3-OCOR1 moiety that coordinates to Cd2+ using one of its carbonyl 

oxygen atoms. Dissociation of this R1COO-PR2
3-OCOR1 molecule from the cadmium 

atom gives a Cd(R1COO)(Se-H) complex 6 and a R1COO-PR2
3-OCOR1 molecule 7 (20.0 

kcal·mol-1).  

The Cd(Se-H)(R1COO) complex 6 can be viewed as the basic growth unit of 

CdSe clusters and nanocrystals. A detailed study of the nanocrystal growth process from 
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the Cd(Se-H)(R1COO) complex is underway. R1COO-PR2
3-OCOR1 7 can exist in either 

cis or trans conformation, depending on the relative orientation of the two carbonyl 

groups. The barrier of the cis-trans transition is very low. The cis conformer can undergo 

a unimolecular decomposition reaction, in which the equatorial carbonyl oxygen attacks 

the axial carbonyl carbon, breaking the axial C-O bond and the equatorial P-O bond to 

produce phosphine oxide and carboxylic acid anhydride (Scheme 4-2). These two 

decomposition products are the only other major reaction products observed 

experimentally besides CdSe nanocrystals. The activation free energy of this reaction is 

relatively low (Figure 4-4, ∆G‡573=22.3 kcal·mol-1, referenced to the trans conformer) 

while the total free energy of Cd(Se-H)(R1COO) complex, phosphine oxide, and 

carboxylic acid anhydride is 1.0 kcal·mol-1 relative to the precursors.  
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Scheme 4-2. Unimolecular decomposition of R1COO-PR2
3-OCOR1  

 

 

Figure 4-4 Transition state of the unimolecular decomposition of R1COO-PR2
3-OCOR1 

(R1 = R2 = H). 
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4.4 Conclusion 

In summary, I have calculated the free energy landscape of the precursor 

decomposition and monomer formation of the synthesis of CdSe nanocrystals within 

B3LYP level of theory. The calculation shows that phosphine selenide is first activated 

by binding to cadmium carboxylate, which is followed by an intramolecular nucleophilic 

attack by the carboxylate. Carboxylic acid surfactant plays an important role in the 

cleavage of P=Se bond by supplying proton to the selenium atom. Our result reveals the 

general features of the precursor to monomer conversion pathway and offers a theoretical 

ground for studying the nanocrystal nucleation and growth kinetics.  
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Chapter 5 

 

  Effect of Water on the Synthesis of  

CdSe and CdS Nanorods 

 

5.1 Introduction 

The growth anisotropy of CdSe, CdS, and other group II-VI materials has made it 

possible to synthesize non-spherical shaped nanocrystals of this class.1-4 Both 

experimental2,3 and theoretical5-7 studies have suggested that adsorption of surfactant 

molecules on the nanocrystal surface is one of the major mechanisms of the anisotropic 

growth. Based on these results, it has been suggested that by tuning the binding strength 

of surfactant to the nanocrystal surface, it might be possible to precisely engineering the 

growth of nanocrystals. So far, a number of organic ligands, including phosphonic acid, 

carboxylic acid, and amine, have been used in the synthesis of group II-VI nanocrystals. 

The binding energy of these ligands is determined by the nature of their head groups. To 

the best of our knowledge, no clear correlation between the binding strength and 

nanocrystal shape has been demonstrated.  

In the previous chapters, I have shown that during the synthesis of CdSe 

nanocrystals using phosphonic acid as surfactant,8 poly-phosphonic acid anhydride was 

one of the major reaction products. The fate of phosphonic acid anhydride depends on the 
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moisture content of the reaction mixture. Under anhydrous conditions, significant amount 

of phosphonic acid anhydride accumulates in the reaction mixture. However, in cases 

where the reaction mixture is not strictly anhydrous, the anhydride product undergoes 

hydrolysis reaction to produce monomeric form of phosphonic acid. The first case is 

represented by the synthesis of CdSe using CdMe2 as the cadmium precursor, while the 

second case is true for the CdSe synthesis using CdO as the precursor. In the CdO based 

syntheses, one equivalent of water was produced during the dissolution of CdO according 

to equation (5-1) (H2-PA: n-alkylphosphonic acid, Cd-PA: cadmium n-

alkylphosphonate).8,9 The water generated by equation (5-1) condenses on the sidewall of 

the reaction vessel and serves as a reservoir of water vapor that diffuses to the reaction 

mixture during the nanocrystal growth.8  

CdO + H2-PA → Cd-PA + H2O                                                                          (5-1) 

Poly-phosphonic acid anhydride is a polydentate ligand that should bind to 

surface cadmium atoms of CdSe nanocrystal much stronger than monomeric form of 

phosphonic acid does. Since the presence of water controls the concentration of poly-

phosphonic acid anhydride in the reaction mixture; we can therefore predict that water 

should significantly affect the degree of surface passivation of CdSe nanocrystals during 

its growth. Such change in the surface coverage should significantly change the size and 

shape evolution of CdSe nanocrystals. Specifically, CdSe nanorods grown in the presence 

of water should be fatter than the ones grown under anhydrous conditions, since it has 

been shown that surfactant mostly bind to the side facets of the nanorods. 

Interestingly, it has been known that the CdSe nanorod synthesized using CdMe2 

has very different morphology from that prepared using CdO. The CdSe nanorod 
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prepared using CdMe2 is usually thinner and has larger aspect ratio than that prepared 

using CdO. In light of the differences in the chemistry between the two types of 

syntheses, we suspect that the water is responsible for the differences in the nanorod 

morphology.  

 

5.2 Experimental 

Tri-n-octylphosphine (TOP, 97%, Strem), tri-n-butylphosphine (TBP, 99%, 

Strem), TOPO (Aldrich or Arcos, 99%. The same batch of TOPO was used whenever 

two experiments were to be compared), n-octadecylphosphonic acid (H2-ODPA, 

Polycarbon), n-hexylphosponic acid (H2-HPA, Polycarbon), CdO (Aldrich, 99.99+%), 

Ac2O (99%, EMD chemicals), Selenium (99.99%, Aldrich), and Sulfur (99.99%, 

Aldrich) were used as received. Standard air sensitive techniques were used to handle air 

and moisture sensitive compounds.  

Synthesis of CdE (E=S, Se) nanocrystal with vacuum drying. CdSe: To a 25 

mL three-neck flask equipped with a condenser and a thermocouple adapter was added 

TOPO (2.73 g, 7.06 mmol), H2-ODPA (1.07 g, 3.20 mmol), and CdO (0.204 g, 1.60 

mmol). The mixture was degassed at 120 °C and 200 - 400 mtorr pressure for 60 min. 

The flask was then filled with Ar and the temperature was raised to 320 °C to dissolve 

CdO. After dissolving CdO, the temperature was lowered to 150 °C and the pressure was 

reduced to ~300 mtorr for 60 min. The flask was then filled with Ar and the temperature 

was raised to 270 °C. Pure TOPSe (0.70 g, 1.6 mmol) was injected and the temperature 

was allowed to stabilize at 260 ± 2 °C. The amount of TOPSe injected (1.4 ± 0.1 mmol) 

was measured as the difference between the mass of the syringe before and after the 
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injection. Aliquots taken after the injection of TOPSe were dissolved in toluene and used 

for TEM and UV-Vis measurements without any purification. CdS: CdS nanorod was 

prepared similarly using a mixture of TOPS (1.6 mmol) and toluene (0.30 g) as the 

injection solution. The injection and growth temperatures were 320 °C and 290 °C, 

respectively. 

Synthesis of CdE nanocrystal with added water. After the reaction mixture was 

dried under reduced pressure after the dissolution of CdO as described in the previous 

paragraph, the temperature was further lowered to 90 °C and water (100 mg) was added 

to the flask via a syringe under Ar. The reaction was then heated to the injection 

temperature and TOPE was injected as described above. 

Synthesis of CdSe nanocrystal with Ac2O drying. To a 25 mL three-neck flask 

equipped with a condenser and a thermocouple adapter was added TOPO (3.00 g, 7.77 

mmol), H2-ODPA (0.85 g, 2.54 mmol), H2-HPA (0.16 g, 0.96 mmol) and CdO (0.199 g, 

1.60 mmol). The mixture was degassed at 120 °C and 200 - 400 mtorr pressure for 15 

min. The flask was then filled with Ar and heated to 320 °C to dissolve CdO. After 

dissolving CdO, the temperature was lowered to 120 °C and the pressure was reduced to 

~200 mtorr for 20 min. The flask was then filled with Ar before Ac2O (0.50 mL) was 

added via a syringe and allowed to react for 2 - 3 hours at 120 °C. Excess Ac2O was 

removed with an Ar stream after which the reaction mixture was degassed at 150 °C, 200 

mtorr for 10 min. The flask was then filled with Ar and heated to 270 °C. TBPSe (0.15 

mL) was injected to the reaction mixture via a syringe. The temperature was set to 260 °C 

after the injection and the total reaction time is 30 min. After the first TBPSe injection, 

TBPSe was added to the reaction mixture via a 21 gauge disposable needle at a rate of 1 
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drop every 20 s in the first 20 min of reaction and 1 drop every 15 s after 20 min of 

reaction. The total amount of TBPSe added was 0.59 g (2.1 mmol). For the CdSe 

nanocrystal synthesis carried out without drying, the reaction mixture was cooled to 120 

°C without degassing and then heated up 270 °C before TBPSe was injected. For the 

control experiment with added water, water (29 mg, 1.6 mmol) was added to the reaction 

mixture via a syringe at 120 °C after excess Ac2O was removed by Ar stream and 

degassing and before TBPSe injection. 

Time required to develop a red color in the reaction mixture were 4 min (with 

Ac2O drying), 30 s (no drying), and 20 s (with Ac2O drying then added water). 

Computational methods. All calculations were carried out using pcGAMESS 

program10 at the B3LYP11-14 (using VWN3 functional) level of theory. The following 

basis sets15 were used: Lanl2dzdp basis without the diffusion function and the associated 

effective core potential (ECP) for Cd, Se, and P,16 and 6-31G* basis for O, C, and H.17 

The molecular geometries were relaxed in vacuum without constrain until the maximum 

energy gradient is smaller than 5x10-5 hartree/bohr. Frequency calculation was performed 

at the same level of theory to confirm that the obtained geometry is a local minimum. 

Thermodynamic properties were calculated at 300 K assuming rigid rotor model and 

ideal gas behavior and referenced to the free surfactant and (CdSe)6 cluster.  

 

5.3 Results and Discussion 

Density functional theory calculations were first carried out to compare the 

binding energy of phosphonic acid anhydride and regular phosphonic acid to CdSe 

nanocrystal surface. Since only relative binding energy was needed to compare the two 
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surfactants, we used a (CdSe)6 cluster to model CdSe nanocrystal (Figure 5-1). As 

expected, the di-methyl-phosphonic acid anhydride binds to (CdSe)6 much stronger 

(∆G298 = 21.6 kcal·mol-1) than methyl-phosphonic acid does (∆G298 = 14.6 kcal·mol-1). In 

view of this result, we expect that the growth of CdSe nanocrystal should be slower in the 

presence of poly-phosphonic acid anhydride.  

             

Figure 5-1. Optimized structure of (left) di-methyl-phosphonic acid anhydride and (right) 

methyl-phosphonic acid complex with Cd6Se6. 

 

To verify this theoretical prediction, we have synthesized CdE (E=S, Se) 

nanorods by an injection of TOPE (tri-n-octylphosphine selenide or sulfide) to a TOPO 

solution of Cd-PA at high temperature. To carry out the nanocrystal synthesis in an 

anhydrous environment, the reaction mixture was dried under reduced pressure (200 

mtorr, 150 ºC, for 1 hour) between the dissolution of CdO and the injection of TOPE. 

This procedure has been shown to remove at least 90% of the water generated by 

equation (5-1).8 To demonstrate the effect of water on the growth of CdE nanorod, 

control experiments were carried out where water was added to the reaction between the 

vacuum drying and the injection of TOPE. Care was taken to ensure that other reaction 

conditions stayed the same for the two syntheses.  
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After the injection of TOPE, the reaction mixture gradually developed a red or 

yellow color, indicating the nucleation and growth of CdSe and CdS nanocrystals, 

respectively. It was observed that this color change was faster in the reactions carried out 

with added water than their dried counterparts, which is consistent with faster reaction 

rate with added water.8 An increase in the diameter and decrease in the average aspect 

ratio of the nanorod was observed when the reaction was carried out with added water. 

For example, the average aspect ratio of the CdS nanorod prepared with vacuum drying is 

20 (nanorod dimension: 92±16 nm × 4.5±0.5 nm, the errors represent one standard 

deviation of the measurements) at 40 min after the TOPS injection, while that of the CdS 

nanorod prepared with added water is only 8 (57±13 nm × 7.0±0.8 nm) at the same 

reaction time (Figure 5-2, A B). A similar observation was made in the two CdSe 

nanorod samples taken at 9 min (Figure 5-2, C D). The average aspect ratio of the CdSe 

nanorod decreased from 2.8 (with vacuum drying, 14.5±2.0 nm × 5.2±0.6 nm) to 1.7 

(with added water, 9.9±1.1 nm × 5.8±0.6 nm) upon addition of water. Although the 

reaction conditions have not been optimized to prepare mono-dispersed materials, the 

dependence of the nanorod diameter and aspect ratio on the presence of water is 

significant in both cases. 
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Figure 5-2. Transmission electron micrographs of CdS nanocrystals prepared (A) with 

vacuum drying and (B) with added water, and CdSe nanocrystals prepared (C) with 

vacuum drying (D) with added water. The insets are high resolution images of CdS 

nanocrystal. Scale bars represent 100 nm for CdS, 5 nm for the insets, and 20 nm for 

CdSe, respectively. 

 
UV-Vis absorption spectroscopy was used to follow the time evolution of the 

CdSe nanorod diameter, since most of the quantum confinement effect of the nanorod 

originates from this dimension.18 At the same reaction time, the 1st exciton peak of the 

CdSe sample prepared with added water is always red-shifted compared to that grown 

under anhydrous conditions (Figure 5-3, bottom left). This red shift shows that the 
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presence of water increases the growth rate of the diameter, consistent with the TEM 

measurements. In addition, an absorption peak at 350 nm appeared in the UV-Vis 

spectrum at early reaction times when the reaction was dried with reduced pressure   

(Figure 5-3, C). Such an absorption feature was not observed in the synthesis with added 

water (Figure 5-3, D). Similarly, an absorption peak at 310 nm appeared in the CdS 

synthesis only when the reaction was dried with reduced pressure. The 350 nm peak that 

appeared in the CdSe synthesis has been suggested to arise from a CdSe cluster and its 

appearance was shown to be correlated with the anisotropic growth of CdSe nanocrystal.4 

Indeed, the two vacuum-dried reactions produced nanocrystals with smaller diameter and 

higher aspect ratio. Thus it appears that water reduces the growth anisotropy of CdS and 

CdSe nanocrystals by increasing the growth rate in the diameter dimension. 

In the above experiments, water was not quantitatively removed. In addition, 

poly-phosphonic acid was formed by the reaction between the precursors and its amount 

was limited by the conversion of the precursor. To circumvent these limitations, a more 

effective method was used to probe the role of poly-phosphonic acid in the synthesis of 

CdSe nanorods. Briefly, acetic acid anhydride (Ac2O) was added to the reaction after the 

dissolution of CdO and allowed to react at 120 ºC for 2-3 hours. Water was removed 

according to equation (5-2) (HOAc: acetic acid). In addition, phosphonic acid could also 

be dehydrated to produce poly-phosphonic acid (5-3) in the process 

Ac2O + H2O → 2 HOAc                                                                                    (5-2) 

H2-PA + Ac2O → poly-H2-PA + 2 HOAc                                                         (5-3)  
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Excess Ac2O and any HOAc formed by (5-2) and (5-3) were removed under 

reduced pressure at 150 ºC (b.p. of Ac2O: 139 ºC, HOAc: 118 ºC). Multiple injections of 

selenium precursor were used in this set of experiments. 
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Figure 5-3. UV-Vis spectra of the aliquots taken in reaction (C) at 13, 85, 195, 298, 507 

seconds, and reaction (D) at 6, 51, 120, 185, 305 seconds; reaction (F) and (G) at 5, 10, 

15, 20, 25, 30 min after Se precursor injection. The bottom curves show time evolution of 

the first exciton peak position in the reactions.  

 

In the reaction carried out without any drying (Figure 5-4, E), the growth of CdSe 

nanorod in the long axis essentially stopped after the first five minutes, even though Se 
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precursor was continuously added throughout the reaction. The reaction with Ac2O 

drying (Figure 5-4, F) showed distinctly different growth kinetics and nanocrystal 

morphology from reaction E. Especially, the growth in the length continued throughout 

the reaction and the maximum length of the nanorod increased to more than 3 times that 

of sample E. To show that the changes in the growth kinetics and nanocrystal 

morphology are due to the rigorous removal of water by Ac2O treatment, a control 

experiment was carried out in which the reaction mixture was first dried with Ac2O and 

then added 29 mg (amount of water generated from CdO: 30 mg) of water.  This control 

experiment produced essentially the same growth kinetics and nanocrystal morphology as 

those observed in reaction E (Figure 5-3 and 5-4, G).  

UV-Vis spectra of the aliquots taken from the above three CdSe syntheses showed 

similar features to those observed in the vacuum-dried reactions. First, the 1st exciton 

peaks of sample E and G are substantially red shifted compared to that of sample F, 

which suggests that the presence of water increased the growth rate of the nanorod 

diameter (Figure 5-3, bottom right). In addition, a sharp peak at 350 nm was observed in 

sample F for up to 25 min after the first injection of TBPSe (Figure 5-3, F). In contrast, 

such an adsorption feature was not observed in sample E and G even in the first sample 

taken at 5 min. Again, the extended appearance of the 350 nm peak in sample F is linked 

with the rigorous removal of water and the enhanced anisotropic growth of the nanorod. 

These observations further support the hypothesis that the presence of water decreases the 

growth anisotropy of CdSe and CdS nanocrystals by increasing the growth rate in the 

diameter dimension under our reaction conditions.  
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Figure 5-4. TEM images of CdSe nanorods prepared by (E) without any drying (F) dried 

with Ac2O treatment (G) dried with Ac2O then added 20 mg of H2O. The top right graph 

shows the time evolution of the nanorod length. The TEM samples were taken at 30 min 

after the reaction. The scale bars represent 20 nm. The error bars represent one standard 

deviation. 

 

5.4 Conclusions 

In summary, we have shown that poly-phosphonic acid anhydride is an effective 

surfactant to produce high-aspect ratio CdSe and CdS nanorod. The presence of water 

decreases the growth anisotropy of CdSe and CdS nanocrystals by hydrolyzing poly-

phosphonic acid anhydride. Our results explain the difference in the nanorod morphology 
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between the samples prepared using CdMe2 and that using CdO. It also provided the first 

example of rational design of reaction condition to control the growth of CdSe and CdS 

nanocrystals.  
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Chapter 6 

 

 Preparation of Asymmetric Nanostructures  

from CdTe Tetrapod Nanocrystals 

 

Reproduced with permission from “Liu, H.; Alivisatos, A. P. “Preparation of Asymmetric 

Nanostructures through Site Selective Modification of Tetrapods” Nano Letter 2004, 4, 

2397-2401, Copyright 2004 American Chemical Society. 

 

6.1 Introduction 

In the previous chapters, I have discussed the chemistry of group II-VI 

nanocrystal synthesis from molecular precursors. The synthesis of nanocrystal can be 

viewed as a self-assemble process by which small building blocks, i.e., atoms, are 

assembled into a super-structure, i.e., nanocrystal. In some aspects, nanocrystal itself also 

mimics some properties of atom. One of the most often cited examples is the analogy 

between quantum dots and atoms, both having discrete energy levels in their electronic 

structures. In fact, quantum dots are often called ‘artificial atoms’ for this reason. In the 

field of nanoscience, to build self-assembled structures from nanocrystals has been an 

area of active research. The ability to build controlled nanocrystal assemblies, or 

“artificial molecules”, from nanocrystal “artificial atoms”1-3 makes it possible to mimic 
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the molecular world in a much larger dimension. State of the art nanomaterial syntheses 

can now produce colloidal nanoparticles (NPs) with controlled sizes, shapes, and 

compositions4,5. However, only highly symmetric NPs, such as spheres6, rods7,8, and 

more recently tetrapods9 have been well studied. Nanometer sized materials of greater 

complexity can be built with components of lower symmetry, offering the possibility of 

creating materials with a higher level of integrated functionality. 

Asymmetry is a common feature of the building blocks in many self-assembled 

structures. For example, phospholipids, molecules that have polar groups on one end and 

non-polar ones on the other, are basic building blocks for cell membranes. The 

asymmetry in hydrophilicity enables them to self- assemble into bilayer structures in 

water. Another very good example is diblock copolymer, which can self-assemble into 

different morphologies such as spheres, cylinders, and lamellae. In this case, the self- 

assembly depends not only on the existence of asymmetry, i.e. the two different blocks, 

but also on the degree of asymmetry, which is the volume ratio between them.  

Asymmetric nanostructures are more versatile building blocks compared to their 

symmetric counterparts. For example, when a gold NP is asymmetrically modified with 

only one single strand DNA (ssDNA), it can be used as the building block to prepare 

more complex structures such as dimers and trimers1,3. Recently, it has been shown that 

asymmetric diblock Au-polymer nanorods can self-assemble into bundles, tubes, and 

sheets10. The degree of asymmetry of the nanorods, which is the length ratio of the two 

blocks, determines the final assembled structure, similar to the case of the diblock 

copolymer. 
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Some asymmetric structures have been prepared using post synthesis 

modifications. For example, gold half-shell structures were produced by evaporating gold 

onto an array of silica colloidal particles11. Heat treatment of these structures gave gold–

metal oxide asymmetric dimers12. In a similar approach, gold shell structures have been 

grown from Au NP seeds on a silica surface to produce gold cups or caps13. Direct 

synthesis of asymmetric structures has also been realized in nanowire systems using 

chemical vapor deposition14-16. Similarly, asymmetric rods can be prepared using 

template directed growth10,17.  

 In many of the above examples, relatively large particles were prepared. For 

example, the gold–metal oxide asymmetric dimers can only be prepared from metal oxide 

particles larger than 200 nm. The gold-polymer asymmetric nanorods have diameters 

around 200 nm and lengths over one micrometer. As a result, they can only be used to 

prepare assemblies in micrometer or even larger dimensions. To prepare sub-micrometer 

sized assemblies, smaller asymmetric building blocks are needed. Furthermore, it is 

desirable to develop a range of methods that can yield such structures. 

CdTe tetrapods were recently prepared in high yield in our group9. The structure 

of the tetrapod is topologically similar to that of a sp3 hybridized carbon atom. With the 

possibility to mimic the bonding between carbon atoms in organic molecules, this type of 

structure can serve as a very interesting building block to prepare superstructures, 

especially three dimensional ones. For example, it would be very interesting to modify 

each of the four arms differently, to produce a chiral “nanocrystal molecule”. Another 

advantage of using tetrapods as building blocks lies in the fact that the dimension of 

tetrapods can be tuned over a wide range. For example, the arm length can be made from 
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less then 20 nm to over 200 nm, while keeping the arm diameter unchanged. This feature 

makes it possible to use tetrapods to prepare structures over a wide range of sizes and 

complexities.  

In this chapter, I demonstrate the first step toward this direction: the preparation 

of asymmetric tetrapods. I show that it is possible to modify only one of the four arms of 

the tetrapod with Au NPs. It is further shown that asymmetrically modified CdTe 

nanorods can be produced by breaking this structure. The structures prepared here are 

potential building blocks to more complex assemblies. The tetrapod arms were modified 

with gold NPs instead of small molecules, mainly for the ease of visualization. It is 

difficult to characterize organic species on the semiconductor NP surface with nanometer 

spatial resolution using current instrumentation. However, use of NPs as tags allows us to 

use transmission electron microscopy (TEM) or scanning electron microscopy (SEM) to 

directly image the modified structures. In addition, the surface chemistry of gold is well 

developed. Attaching gold particles to tetrapods provides a surface with unique chemical 

properties which can be used for further functionalization or preparation of nanostructure 

assemblies.  Finally, Banin and coworkers have recently prepared CdSe nanorods and 

tetrapods with single Au nanoparticles directly attached to the ends18.  It should be of 

interest to compare the properties of those systems with the asymmetric ones produced 

here.  

 

6.2 Results and Discussions.  

In order to selectively modify only one of the four arms, the approximate Td 

symmetry of the tetrapods must be broken first. This was realized by putting tetrapods 
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onto a flat silicon surface. Because of the unique geometry of the tetrapods, three arms 

contacted with the surface and the last one pointed away from the surface. To produce 

high density tetrapod films with minimum aggregation, spin-coating and Langmuir-

Blodgett techniques were first tested but both produced a high degree of aggregation. To 

our surprise, slow evaporation of tetrapod solutions in pyridine produced uniform 

tetrapod coverage with almost no aggregation over the range of 100 µm (Figure 6-1).  

 

 

Figure 6-1.  SEM images (top down view) of the prepared tetrapod film on Si wafer. Left: 

High resolution image showing individual tetrapods. The top arms appear as bright spots. 

Right: Low resolution image showing the large area homogenous film. Each tiny white 

spot corresponds to one tetrapod top arm. The large white islands result from organic 

contamination 

 

To achieve modification of only one arm of the tetrapods, a polymer film was 

then spin-coated to cover the bottom three arms, exposing only part of the top arm 



 95

(Scheme 6-1, step A). So far, two polymers have been tested: poly (3-hexyl-thiophene) 

(P3HT) and poly (methyl methacrylate) (PMMA). Because P3HT is a semiconductor 

polymer, SEM can be used to characterize the surface before and after spin-coating. After 

a ~ 40 nm thick P3HT layer was spin-coated, the bottom three arms showed reduced 

contrast in SEM images, which suggested that they were covered by the polymer film 

(data not shown). Atomic force microscopy (AFM) was used to further characterize the 

composite. Figure 6-2 shows the height image of the polymer-tetrapod surface. Separated 

dots can be found, which correspond to the exposed top arms. The heights of the dots 

roughly match the estimated exposed arm lengths.  
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B

C

D

 

Scheme 6-1. Preparation of asymmetric tetrapods. A: Spin-coat polymer to partially 

cover tetrapods. B: Treat with hexanedithiol solution. Hexanedithiol modified surface is 

shown in blue color. C: Attach gold NP (shown as red dots) onto modified tetrapod 

surface. D: Dissolve the polymer layer.  
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Figure 6-2. Tapping mode AFM height image of the tetrapods partially covered with 

polymer. The image size is 1 µm x 1 µm. The high spots correspond to exposed top arms.  

 

The composite film was then treated with an isopropanol solution of 

hexanedithiol overnight to modify the exposed top arms (Scheme 6-1, step B). P3HT and 

PMMA are not soluble in isopropanol so the bottom three arms remained covered 

throughout this process. Thiol groups readily bind to the CdTe surface. In the case of 

hexanedithiol, one thiol group binds to the CdTe surface while the other one remains free. 

Gold NPs coated with trioctylphosphine (TOP) were then used to modify the top arms via 

the dithiol linkers (Scheme 6-1, step C)19. TOP coated NPs instead of thiol coated ones 

were used because TOP can be easily replaced by the thiol groups. The diameters of the 

gold NPs and arms of the tetrapod we used here were around 5 nm and 10 nm, 

respectively. As a result, multiple gold NPs bound to the top arms in this step. After the 

modification, the polymer film was removed by dissolving it in organic solvent such as 

chloroform (for P3HT) or pyridine (for PMMA) to expose the whole structure (Scheme 

6-1, step D).  
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SEM and TEM were used to characterize the prepared asymmetric tetrapods. 

Figure 6-3 shows the SEM images of the resulting asymmetric tetrapods using PMMA as 

the protecting layer. It can be clearly seen that the tips of the top arms have larger 

diameters compared with the bottom parts, as a result of the attachment of large numbers 

of Au NPs. The fine structure is revealed in the selected higher resolution images, shown 

at the bottom of figure 6-3. Individual gold NPs can be seen on the top arm while the 

other three arms are clean. Similar results were obtained using P3HT as the protecting 

polymer.  

Control experiments demonstrate that the modification is indeed mediated by the 

dithiol linker instead of nonspecific adsorption. A silicon chip was spilt into two halves 

after deposition of tetrapods and spin-coating of the P3HT film. One of the pieces was 

treated with hexanedithiol solution and the other was not. Both of them were then treated 

with Au NPs and the polymer layers were removed afterwards. Shown in figure 6-4, the 

sample without hexanedithiol treatment shows no binding of gold NPs while the other 

one shows successful asymmetric modification. 

In one experiment, two cycles of hexanedithiol and gold NP modifications were 

performed before the polymer protecting layer was removed. This procedure produced 

two layers of gold NP shells on the exposed top arms. A much larger cluster of gold NPs 

can be seen on the top arms (Figure 6-5). In a different approach, the thickness of the 

polymer layers was varied to control the exposed arm length in order to control the 

degree of modification (data not shown). 
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Figure 6-3.  SEM images (tilted 30 degrees) of as prepared asymmetric tetrapods on Si 

surface. The top arms were modified with many gold NPs. Top: large area view. Bottom: 

selected high resolution images. 

 

It is desirable to release the modified tetrapods intact from the substrate.  So far 

this has not proven possible, because of the very strong interaction with the substrate.  

When the tetrapods are first deposited, the capillary force from solvent evaporation slams 

the tetrapods onto the surface, flattening the three arms that are pointing down towards 

the substrate.  This effect has been visualized previously in experiments where the 

tetrapods were deposited to the side walls of trenches and could be viewed from the 
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side.20 It also has been seen by C. Kieselowski for tetrapods deposited on flat surfaces 

using tomographic reconstruction in the TEM.21 In the future, it may be possible to gently 

deposit the tetrapods using supercritical fluid, to avoid strong capillary forces. In the 

meantime, we have learned how to break off the uppermost arm of the tetrapod, which is 

asymmetrically modified with Au NPs.  

 

 

Figure 6-4. Control experiment result supports that the modification is a chemical one. 

Left: SEM image of CdTe tetrapods obtained after treating with hexanedithiol and Au 

NPs. Right: SEM image of CdTe tetrapod obtained after treating with Au NPs only. The 

tetrapods were not modified with Au NPs in this case. 

 

 

Figure 6-5. SEM images of asymmetric tetrapods prepared using two cycles of 

hexanedithiol, Au NP modifications. There are much more Au NPs on the top arm 

compared to those in the figure 6-3.  



 101

 

This was accomplished by pressing a TEM grid onto the silicon surface (Scheme 

6-2). During this process, particles were transferred to the TEM grid. Indeed, we were 

able to find a few asymmetrically modified tetrapods on some rare occasions (Figure 6-

6). However, to our surprise, the majority of the materials on the TEM grid were 

nanorods (Figure 6-7, top left). Under higher magnification, it can be seen that the 

nanorods were asymmetrically modified with gold NPs (Figure 6-7, top right) formed by 

breaking the modified top arms by the TEM grid. We found that this break-and-transfer 

process could be applied to other substrates as well. The bottom of Figure 6-7 shows 

SEM images of the broken asymmetric CdTe nanorods transferred to a Si substrate. We 

want to emphasize here that this simple method produces asymmetric nanorods which are 

very hard to prepare in other ways. Besides the interesting semiconductor-metal 

heterostructure itself, these asymmetric nanorods can also be used as useful basic 

building blocks. For example, if functionalized by appropriate organic molecules on the 

gold NPs; they can be potentially made into nanocrystal amphilphiles. Furthermore, they 

should exhibit anomalously large transient electric birefringence22, and may have 

interesting non-linear optical properties.  

 

Scheme 6-2. Asymmetric tetrapods are broken to produce asymmetric rods.  
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.  

Figure 6-6. TEM image of asymmetric tetrapod. 
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Figure 6-7. TEM (top) and SEM (bottom) images of asymmetrically modified CdTe rods 

 

In conclusion, we successfully prepared asymmetrically modified CdTe tetrapods 

and nanorods via a site selective modification method. These novel structures can be 

potentially used as basic building blocks to prepare more complex nanostructures. The 

mild preparation process makes it possible to modify other tetrapod shaped substrates, for 

example, CdSe8 and ZnO tetrapods23 in the future. By using different material specific 

linker molecules, other NPs can also be used in the modification.  
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Chapter 7 

 

Conclusion and Outlook  

 

7.1 Summary of Research 

This dissertation studied the chemistry of the group II-VI colloidal nanocrystal 

synthesis based on the approach of high temperature decomposition of precursors. By 

using a combination of NMR and MS techniques, I have fully characterized the 

molecular structures of the precursors and products of the synthesis of cadmium and zinc 

chalcogenides nanocrystals. 31P NMR study suggests that chalcogen precursor is 

activated by binding to the metal precursor using the chalcogen atom. Nucleophilic attack 

on the activated phosphine chalcogenide cleaves the phosphorous - chalcogen bond and 

releases the chalcogen atom for nanocrystal growth.  

Density functional theory calculation was used to map the detailed free energy 

landscape of the precursor to monomer conversion pathway for the synthesis of CdSe 

nanocrystal from cadmium carboxylate and phosphine selenide. The results show that 

phosphine selenide binds to cadmium carboxylate using the selenium atom. The 

phosphorous atom of the phosphine selenide was attack by a carboxylate to give an 

intermediate, converting the P=Se double bond to a P-Se single bond in the process. This 

intermediate then binds to a carboxylic acid surfactant molecule and breaks the P-Se 

single bond via a proton transfer from the carboxylic acid to the Se atom. These results 
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show that surfactant molecule plays an important role in the cleavage of phosphine 

selenide and is an integral part of the nanocrystal synthesis.  

Based on the above experimental and theoretical results, I have designed a new 

synthetic method that uses water as a reagent to control the growth of CdSe and CdS 

nanorod in the diameter dimension. An analysis of the CdSe and CdS nanocrystal 

synthesis shows that poly-phosphonic acid was produced as a major reaction product 

when alkyl-phosphonic acid was used as the surfactant. Poly-phosphonic acid is a poly-

dentate ligand that should bind to nanocrystal surface stronger than regular phosphonic 

acid does, which is verified by density functional theory calculations. The fact that poly-

phosphonic acid readily hydrolyzes in the presence of water was used to control the 

degree of surface passivation of nanocrystal and thus the nanocrystal growth kinetics. 

Experimental results quantitatively reproduced our theoretical predictions.  

Finally, the asymmetric modification of CdTe tetrapod nanocrystal using Au 

nanocrystal was described. The structure of the tetrapod is topologically similar to that of 

a sp3 hybridized carbon atom, which makes it an attractive candidate to prepare self-

assembled structures. CdTe tetrapods were deposited on a substrate, and partially coated 

with a protective polymer layer, exposing just one arm.  The exposed arm was then 

decorated with Au nanoparticles in a site selective fashion.  The modified arms were 

readily broken off from the remainder of the tetrapods, and released from the substrate, 

yielding CdTe nanorods asymmetrically modified with Au nanoparticles.   
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7.2 Outlook 

Previous study on the synthesis of nanocrystals has been heavily focused on 

empirical optimization of reaction conditions in order to obtain high quality nanocrystals. 

Little effort has been made to understand the underlying mechanism that produces the 

nanocrystal in the first place. Work presented in this dissertation represents one of the 

first attempts toward this goal.  

Synthesis of nanocrystal from its precursors is a rather complicated process that 

involves monomer formation, nucleation, and finally nanocrystal growth. This 

dissertation only discussed the precursor decomposition process, which presumably also 

generates monomer. The mechanism of nanocrystal nucleation and growth would be the 

natural extension of the current study. However, experimental study of this kind would be 

rather difficult since structural characterization of monomer and nuclei remains a 

challenge. Computer simulation, on the other hand, is not restrained by these problems 

and has the potential of providing detailed mechanistic information on the nucleation and 

growth of nanocrystals. 

Nevertheless, the results presented in this dissertation, though limited in scope, 

can still be successfully used to improve the understanding of current nanocrystal 

synthesis and hopefully, develop totally new synthetic methods. As an example, I 

presented a mechanism based design of nanorod synthesis that uses a very 

unconventional reagent, water, to control the growth of nanorod. Future work in this 

direction will certainly provide more examples to showcase the power of chemistry in 

creating novel materials.  

 


